Attachment 9

Initial Study Report Meetings

Action Item for Study 5.7

March 23, 2016

Susitna-Watana Hydroelectric Project (FERC No. 14241)

Initial Study Report Meetings March 23, 2016 Action Items

Mercury Assessment and Potential for Bioaccumulation Study Study Plan Section 5.7

Study 5.7 Mercury Assessment and Potential for Bioaccumulation Study Action Item

Action Item 5.7-1. AEA will provide a table of the Harris and Hutchison model inputs, outputs, and calculations.

The method and calculations for the peak methyl-mercury increase factors using the Harris and Hutchison (2008) Model were presented in the Study 5.7 Revised Study Plan (RSP), Section 5.7.4.7.1, as follows:

Peak Increase Factor = 1+K1 x (Area Flooded / (Mean Annual Flow+K2 x Area Total))

Where:

K1 Piscivorous Fish regression coefficient = 0.4616 (km/yr)

K2 Piscivorous Fish regression coefficient = 0.055 (1/yr)

K1 Non-Piscivorous Fish regression coefficient = 0.2215 (km/yr)

K2 Non-Piscivorous Fish regression coefficient = 0.035 (1/yr)

The origin of the regression coefficients were presented in the RSP Section 5.7.9 and can be found in Harris and Hutchinson (2008). For Susitna-Watana Reservoir, the values used to calculate the peak increase factor were: flooded area = 86.74 km2, total area = 103.38 km2, and mean annual flow = 7.23 km3/yr. The peak increase factor was multiplied by the measured mean methyl mercury concentration for each species of fish, derived from Tables 5.7-1 to 5.7-8 in the Study 5.7 SIR. The results were presented in Table 5.8-1 of the SIR, shown below.

Species	N	Predicted peak increase factor (relative increase)	Current Mean Total Hg in fish tissue (ng/g ww)	Predicted Peak Mean Total Hg in fish tissue (ng/g ww)
Lake Trout	9	4.25	247	1,047
Arctic Grayling	16	2.75	44	121
Dolly Varden	7	2.75	43	119
Slimy Sculpin	7	2.75	41	114
Round Whitefish	14	2.75	57	157
Burbot	6	4.25	68	289
Longnose Sucker	7	2.75	77	212

Study 5.7 SIR Table 5.8-1. Predicted Peak MeHg Concentrations in Fish

Calculation performed using formula from Harris and Hutchison (2008)

MeHg = methylmercury N = sample number

Hg = mercury

ng/g ww = nanograms per gram wet weight

For comparison to the predicted Susitna-Watana reservoir conditions, the peak methyl-mercury increase factor in piscivorous and non-piscivorous fish was reported for several facilities throughout Alaska in the discussion section of Study 5.7 SIR Table 6.8-1, as shown below. The parameters for these calculations are included in the table.

Facility	Capacity (MW)	Area Flooded (km2)	Area Total (km2)	Mean Annual Flow (km3/yr.)	Predicted piscivorous fish peak increase factor (times background)	Predicted non- piscivorous fish increase factor (times background)
Susitna-Watana	600	86.74	103.38	7.23	4.24	2.77
Bradley Lake	126	10.43	15.46	0.62	4.27	2.99
Solomon Gulch	12	2.08	2.49	0.11	4.81	3.39
Swan Lake	22.4	1.82	6.07	0.39	2.69	1.67
Terror Lake	20	2.99	4.13	0.22	4.18	2.82

Study 5.7 SIR Table 6.8-1. Comparison between Predicted Peak MeHg Concentrations in Fish

MeHg = *methylmercury*

MW = megawatts

Km2 = *square kilometers*

Km3 = *cubic kilometers*

Reference:

Harris, R., and D. Hutchinson 2008. Lower Churchill Hydroelectric Generation Project Environmental Baseline Report: Assessment of the Potential for Increased Mercury Concentrations, Prepared by Tetra Tech Inc., March 4, 2008.