

Technical Team Meeting

Riverine Modeling Proof of Concept

Groundwater Study Modeling & Analysis

April 15-17, 2014

Prepared by GW Scientific

DRAFT – SUBJECT TO REVISION

Study 7.5

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

DRAFT – SUBJECT TO REVISION

Study 7.5

Groundwater Study Analysis Process

4/15-17/2014

Focus Area Example: FA-128 (Slough 8A)

Data Collection on Annual Basis

- Winter and Summer
- Time-Series Information on Transects
- Additional Manual Measurements
- Spatial Data Sets Thermal Imaging, Aerial Images (Winter, Summer)

Conceptual Models

 Helps Define the Hydrologic System – Groundwater, Surface Water, Atmospheric

Numerical Models

 Provide Process Understanding and Cause/Effect Analysis, Transient Analysis

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Groundwater Study Modeling

• Why Model?

- Understand processes we can not easily see place
- Bracket the range of processes interactions
- Use in combination of other data and studies to guide reasonable estimates of groundwater conditions and potential changes outside the range of natural variability
- To address specific questions

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Aquatic and Riparian Resources

- Inter-Related
- Impacts on Riparian = Impacts on Aquatic
- Groundwater Questions Have Many Overlaps

Habitat types identified in the middle reach of the Susitna River during the 1980s studies (adapted from ADF&G 1983; Trihey 1982).

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Groundwater/Surface-Water Interaction Processes

4/15-17/2014

DRAFT – SUBJECT TO REVISION

Study 7.5

FA-128 (Slough 8A) Hydrology Features

Orthophoto Source: 2011 Matanuska-Susitna Borough LiDAR & Imagery Project. Data Sources: See Map References

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

FA-128 (Slough 8A) Hydrology Features (A-G)

- A, B, C Inlets to Upper Side Channel 8A
- D Inlet to Transitional Channel/Slough 8A
- E Inlet to Middle Side Channel 8A
- F Outlet of Middle Side Channel 8A
- G Confluence of Middle Side Channel 8A and Slough 8A

Clean, reliable energy for the next 100 years.

FA-128 – (Slough 8a), Upland Slough, Upstream End, October 3, 2013

SUSITNA-WATANA HYDRO

FA-128 (Slough 8A) Analysis Transects

4/15-17/2014

FA-128 (Slough 8A) Primary Analysis Area

Orthophoto Source: 2011 Matanuska-Susitna Borough LiDAR & Imagery Project Data Sources: See Map References

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

FA-128 (Slough 8A) Key Hydrologic Boundaries

Orthophoto Source: 2011 Matanuska-Susitna Borough LiDAR & Imagery Project Data Sources: See Map References

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

FA-128 (Slough 8A) Data Stations

Orthophoto Source: 2011 Matanuska-Susitna Borough LiDAR & Imagery Project Data Sources: See Map References

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

FA-128 (Slough 8A) Survey Control

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

FA-128 (Slough 8A) Groundwater Wells

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

FA-128 (Slough 8A) Aquatic Transect Stations

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

GW/SW Examples – Aerial Images

FA-128 – (Slough 8A), Junction of Middle Side Channel 8A and Slough 8A, June 12, 2013 Susitna River at Gold Creek (12:20) = 35,900 CFS

FA-128 – (Slough 8A), Junction of Middle Side Channel 8A and Slough 8A, October 3, 2013 Susitna River at Gold Creek (15:45) = 9,130 CFS

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

ESSFA128-1 Example - Time-Lapse Cameras

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

ESSFA128-1 Example - Time-Lapse Cameras

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION

Study 7.5

ESGFA128-12 Example – Temperature, Water Level

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

ESGFA128-12 Example – Temperature, Water Level

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

ESGFA128-2 Example – Temperature, Water Level

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

ESGFA128-2 Example – Temperature, Water Level

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

ESSFA128-1, ESGFA128-6,-13 Example – Water Level

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

ESSFA128-1, ESGFA128-6,-13 Example – Water Level

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

DRAFT – SUBJECT TO REVISION

Study 7.5

ESSFA128-1, ESGFA128-6,-7,-13 Example –Temp

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

ESSFA128-1, ESGFA128-6,-7,-13 Example – Temp

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

ESGFA128-7 Example – Water Level, Temperature

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

ESGFA128-7 Example – Water Level

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

ESGFA128-7 Example – Temperature

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

DRAFT – SUBJECT TO REVISION

Study 7.5

ESGFA128-7 Example – Streambed Temperatures

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

DRAFT – SUBJECT TO REVISION

Study 7.5

ESGFA128-7 Example – Streambed Temperatures

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

DRAFT – SUBJECT TO REVISION

Study 7.5

GW/SW FA-128 (Slough 8A) Upwelling Data

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

GW/SW FA-128 (Slough 8A) Upwelling Zones

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Focus Area Example: FA-128 (Slough8A)

- Aquatic Section FA128-2DM1 Slough 8A
 - Upland Dominated, groundwater inflow, warm
- Aquatic Section FA128-2DM2 Middle Side Channel 8A (Lower)
 - Both lateral groundwater inflow (warm) and mainstem surface water (cold – winter; warm – summer)

Clean, reliable energy for the next 100 years.

Riverine, Upland Transitional

FA-128 – (Slough 8a), Upland Slough, location of aquatic transect FA1282DM1, October 29, 2013

4/15-17/2014

SUSITNA-WATANA HYDRO

Focus Area Example: FA-128 (Slough8A)

- Aquatic Section FA128-2DM1 Slough 8A
 - Upland Dominated, groundwater inflow, warm
- Aquatic Section FA128-2DM2 Middle Side Channel 8A (Lower)
 - Both lateral groundwater inflow (warm) and mainstem surface water (cold – winter; warm – summer)
 - Riverine, Upland Transitional

Groundwater Upwelling Trends Matrix Input Table – Example Only

Month	Slough Lateral Habitat	Side Channel Lateral Habitat
Oct	Up, Increasing	Up, Increasing
Nov	Up, Increasing	Up, Increasing
Dec	Up, Increasing	Up, Increasing
Jan	Up, Increasing	Up, Increasing
Feb	Up, Increasing	Up, Increasing
Mar	Up, Stable	Up, Stable
Apr	Up, Stable	Up, Stable
May	Up, Stable	Up, Stable
June	Down, Increasing	Down, Increasing
Jul	Down, Increasing	Up, Increasing
Aug	Down, Stable	Up, Stable
Sept	Reversing	Up, Decreasing

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Next Steps

- Continued Empirical Data Collection
- GW/SW Process
 Numerical Modeling (Year 2)
- Empirical Relationship Development
- Upscaling

FA-128 (Slough 8A), Slough 8A and Middle Side Channel 8A junction on October 29, 2013

SUSITNA-WATANA HYDRO