

Technical Team Meeting

Riverine Modeling Proof of Concept

Reservoir Water Quality Modeling

April 15-17, 2014

Prepared by Tetra Tech

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

DRAFT - Subject to Revision

Study 5.6

Water Quality Modeling

- Objectives
 - Predict temperature and nutrient and mercury cycling in the reservoir
 - Predict temperature, nutrients and mercury cycling in the downstream river for preexisting and post reservoir conditions
 - Predict fate and transport for organic contaminants and metals in the reservoir and riverine portion of the study area as required

• EFDC modeling framework

- Hydrodynamic model
- Temperature model
- Nutrient cycling model
- Solids and sorptive contaminant and/or metals transport and fate model
- Mercury cycling model

Hydrodynamic Model

- Provides physical transport
 - Temperature and dissolved and suspended water quality constituents
 - Also fines suspended solids, mercury and potentially toxic organic and inorganic materials
- Three-dimensional reservoir hydrodynamics
 - The only hydrodynamic model of the reservoir
 - Generalized vertical coordinate formulation
 - Historical inflows and projected outflows
 - Consistent inflows and outflows from reservoir operations model

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Temperature Model

- Temperature is equally important as transport for water quality processes
 - Reactions have significant temperature dependence
- Reservoir temperature model
 - The only reservoir temperature model
 - Full thermal balance including ground coupling
 - Includes ice dynamics with a range of complexity levels
 - Model capable of representing outflow from multiple levels
- Forcing functions
 - Synthesized annual time scale inflow temperature
 - Historical and synthesized atmospheric thermal forcing

Nutrient Cycling Model

- Consistent state variables between reservoir and river
- Available State Variables
 - *DO, POC, DOC*
 - NH3, NOX, PON, DON
 - PO4d, PO4p, POP, DOP
 - Optional labile and refractory organic class splits
 - Multiple algae species
- Optional sediment diagenesis model
 - Sediment oxygen demand and nutrient fluxes
- Ice related effects accounted for
 - Re-aeration
 - Light attenuation

Solids and Sorptive Contaminant Transport and Fate Model

- Solids Transport
 - Two solids classes representing fine silt and clay
 - One or more classes of organic solids from nutrient cycling model or externally specified
- Reservoir solids transport
 - Only model of fine sediment trapping in reservoir
 - Critical for representing light attenuation for water quality processes
- Contaminant transport and fate
 - Arbitrary number of sorptive (organics and metals) contaminants
 - Three phase equilibrium partitioning including DOC complexated
- Provides framework for to reservoir mercury model

Model Spatial Resolution

- Spatial resolution of reservoir model optimized for multi-year time to decadal time scales simulations
- Reservoir modeling challenged by up to 60 m pool level fluctuations with drying of shallow areas
- Reservoir model domain and resolution
 - 75 to 150 m lateral resolution
 - 400 to 800 m longitudinal resolution
 - On the order of 1400 horizontal grid cells
 - 2.5 to 25 m vertical resolution (subject to change)
 - Current version has 20 vertical layers in deepest region

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Reservoir Model Horizontal Grid

4/15-17/2014

Reservoir Model Horizontal Grid

4/15-17/2014

Reservoir Model Horizontal Grid

SUSITNA

4/15-17/2014

Proof of Concept Simulations

- Focus on temperature simulation
- Two multiple year simulation periods
 - 1974-1976 Dryer with large pool draw down
 - 1979-1981 Wetter with small pool draw down
 - Longer simulations needed for dynamic temperature equilibrium
- Synthesized inflow temperature and historical atmospheric thermal forcing
- Currently reservoir outflow is from 1800 ft to surface, with multiple level outflow possible when design information becomes available
- Out flow and out flowing temperature provided to river water quality

1974-76 Simulation

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

1974-76 Simulation (metric)

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

1979-81 Simulation

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

DRAFT - Subject to Revision

Study 5.6

1979-81 Simulation (metric)

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

Outflow Temperature

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

1974-76 Simulation

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

DRAFT - Subject to Revision

Study 5.6

1974-76 Simulation (metric)

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

DRAFT - Subject to Revision

Study 5.6

1979-81 Simulation

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

DRAFT - Subject to Revision

Study 5.6

1979-81 Simulation (metric)

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/15-17/2014

DRAFT - Subject to Revision

Study 5.6

Status of the Reservoir Model

- Model configured for 61 year historical-operational scenario with temperature and fine suspended solids
- Simulated 1974-76 and 1979-81 operational scenarios
 - Demonstrates multi-year temperature simulation with large pool level fluctuations
 - Demonstrates that vertical resolution captures thermal stratification and mixing processes
- In progress
 - Sensitivity analysis of temperature simulations
 - Completing suspended solids transport to evaluate reservoir trapping and provide downstream river loading
 - Further evaluation of reservoir ice sub-model
 - Completing configuration of nutrient cycling and mercury models