

Technical Team Meeting **Proof of Concept:** Effective Spawning **Habitat Analysis** April 15-17 2014

Prepared by R2 Resource Consultants

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

27 March 2014

- Identify potential use of discrete channel areas suitable for chum salmon spawning and track the area (hourly) through the subsequent spawning and incubation period:
 - ✓ Dewatering
 - ✓ Freezing
 - ✓ Breached
 - ✓ scour
 - ✓ Intragravel temperature
 - ✓ Intragravel dissolved oxygen

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

• Data Needs:

- ✓ Spawning habitat suitability & distribution*
- ✓ Substrate composition*
- ✓ Spawning and incubation timing or periodicity*
- ✓ Presence of groundwater upwelling*
- ✓ Intragravel water temperature
- ✓ Intragravel dissolved oxygen
- ✓ Hourly water surface elevations (dewatering)*
- ✓ Hourly air temperature (<0 Celsius)</p>
- ✓ Breaching flows*
- ✓ Redd scour*

*Available for Proof of Concept

HSC Chum Spawning Model – Best Fit

$$\log\left(\frac{p}{1-p}\right) = C_k + 19depth - 18depth^2 + 6.8depth^3 - 0.91depth^4 + 3.9vel - 1.9vel^2 + \gamma_{site} + \varepsilon,$$

where

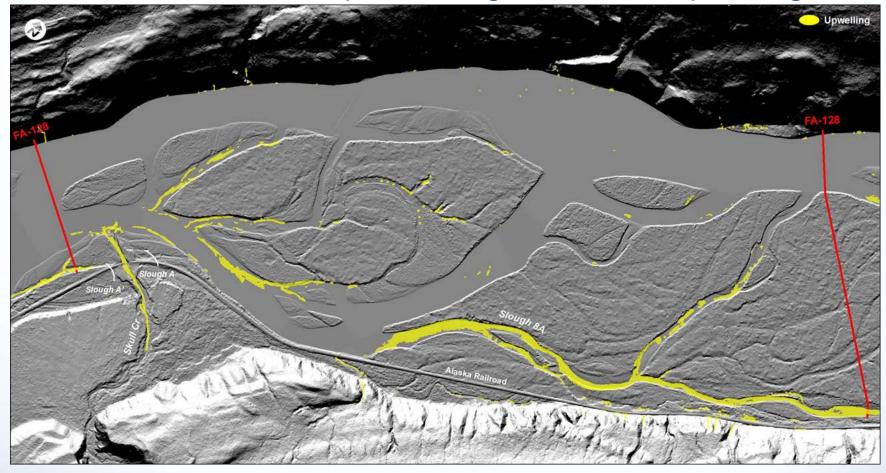
$$C_{UPGR} = -10$$

$$C_{UPCO} = -14$$

$$C_{NOGR} = -13$$

$$C_{NOCO} = -15$$

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.


Periodicity of chum salmon utilization among macro-habitat types in the Middle (RM 184 – 98.5) segment of the Susitna River by life history stage.

	Habitat Type																	
Life Stage	Main Channel	Side Channel	Tributary Mouth	Side Slough	Upland Slough	Tributary	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Middle Susitna River																		
Adult Migration																		
Spawning																		
Incubation																		
Fry Emergence											ĺ				-			
Age 0+ Rearing																		
Age 0+ Migration																		

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

27 March 2014

FA-128 Areas of predicted groundwater upwelling

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

27 March 2014

POC – Effective Spawning Habitat Analysis Spawning Period

- Define potential spawning areas using site-specific HSC preference for chum spawning
- Define spawning periodicity based on 1980's and 2012/2013 data
- Proportion chum spawning run within the spawning period:
 - ✓ August 1 23 = 10% of the run
 - ✓ August 24 -September 21 = 80% of the run
 - ✓ September 22 October 15 = 10% of the run
- Presence of groundwater upwelling using 2012/2013 TIR mapping, open leads, and positive VHG measurements

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Incubation Period (phases)

Define phases of chum incubation: egg/embryo, alevin, and emergence

- Egg and alevin phase have different sensitivities to water temperature, dissolved oxygen, dewatering, and freezing
- Number of days to achieve each phase is driven by intragravel water temperature and accumulated thermal units (ATU)

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Incubation Period (dewatering)

Spawning areas with and without upwelling:

- With upwelling: No mortality due to dewatering
- Without upwelling: if dewatered >48-hrs during egg phase then lose spawning area; if dewatered >1-hr during alevin phase then lose spawning area

Incubation Period (freezing)

Spawning areas with and without upwelling:

- With upwelling: No mortality due to egg freezing
- Without upwelling: if spawning area dewatered and air temp. <0 c for >24-hrs during egg phase, then lose spawning area

Incubation Period (breaching flows)

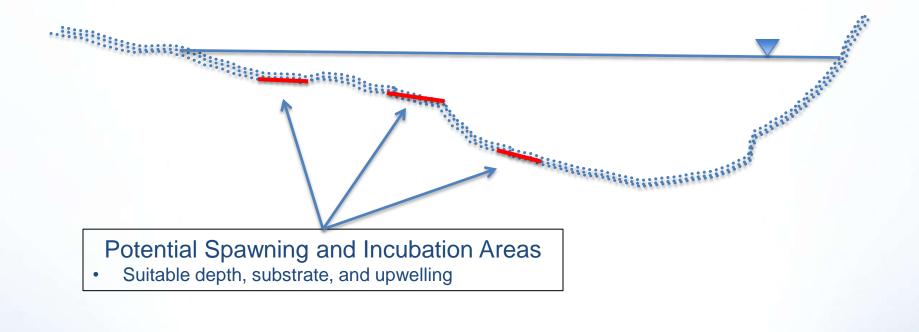
Off-Channel Spawning areas with upwelling:

 If cold surface water (<1 c) is forced into the intragravel environment during egg phase for >48hrs, then lose spawning area

Incubation Period (redd scour)

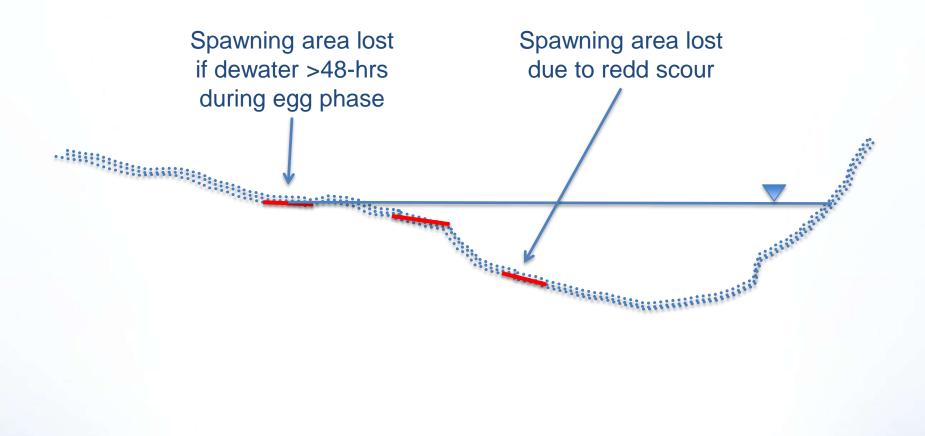
All Spawning areas:

 If spawning area experiences scour during any phase of incubation, then spawning area is lost


Incubation Period (Dissolved Oxygen)

All Spawning areas:

• If intragravel D.O. falls below 3 mg/l for >48-hrs during the egg phase, then spawning area is lost



SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

27 March 2014