

Fisheries Technical Meeting

> Study 9.12 Fish Passage Barriers

March 19, 2014

Prepared by R2 Resource Consultants, Inc. & Tetra Tech, Inc.

Fish Passage Barrier Assessment Topics

- Target/priority fish species selection (Study 9.12; FSP Section 9.12.4.1)
- Species-specific passage criteria (depth, velocity and leaping ability) for individual fish species (Study 9.12; FSP, 9.12.4.2)
- Application of passage criteria in Focus Areas to evaluate current limits of fish habitat access and potential changes with Project conditions (Study 9.12; FSP Section 9.12.4.5 - 9.12.4.7)
- Geomorphological assessment and modeling in support of barrier assessment (Studies 6.5 and 6.6).
- Selection of tributaries to be studied within the Upper and Middle River segments (Study 9.12; FSP Section 9.12.4.3)

9.12 Fish Passage Barriers – Objectives

- Locate and categorize existing barriers in selected Middle and Upper River tributaries
- Evaluate potential changes to existing barriers within the influence of the Project
- Evaluate potential Project-induced creation of barriers

Susitna Fish Species

Arctic grayling

Dolly Varden

Humpback whitefish

Round whitefish

Burbot

Longnose sucker

Sculpin

Eulachon

Bering cisco

Threespine stickleback

Arctic lamprey

Chinook salmon

Coho salmon

Chum salmon

Pink salmon

Sockeye salmon

Rainbow trout

Northern pike

Lake trout

Target Species Selection

- 9.12 Study Plan select same species or a sub-set of those selected for IFS Study 8.5
- Apply same 3 criteria for target fish species selection from Study 9.11 (Fish Passage Feasibility Study):
 - **Exhibits migratory and/or anadromous behavior** most significant for species for which migration is necessary to complete its life cycle.
 - High relative abundance
 - Important to commercial, sport, or subsistence fisheries

Susitna Fish Species
Arctic grayling
Dolly Varden
Humpback whitefish
Round whitefish
Burbot
Longnose sucker
Sculpin
Eulachon
Bering cisco
Threespine stickleback
Arctic lamprey
Chinook salmon
Coho salmon
Chum salmon
Pink salmon
Sockeye salmon
Rainbow trout
Northern pike
Lake trout

1

Proposed Fish Passage Species List

Arctic grayling
Dolly Varden
Burbot
Chinook salmon
Coho salmon
Chum salmon
Pink salmon
Sockeye salmon
Rainbow trout

Passage Criteria for Identified Fish Species

- Upstream Velocity Criteria
- Leaping Criteria for Adult Upstream Migration
- Depth Criteria for Upstream Adult
 Migration and Downstream juvenile
 and resident seasonal movement

Velocity Criteria

Category	Period	Definitions
Sustained speed	> 200min	Maintained indefinitely w/o fatigue, purely aerobic
Prolonged speed	20s to 200min	Short periods of travel at high speeds, aerobic to anaerobic
Burst speed	< 20s	Max swimming speed or jumping, inducing fatigue, anaerobic

U_{crit} (critical swimming speed) max swimming speed a fish can maintain for a period of time (e.g. 10min, 20min, ...) under laboratory conditions. Top end of prolonged speed/aerobic range. Useful for understanding fish passage through culverts

- Prolonged swimming and U_{crit} indicative of fish ability to travel long distances upstream and how fish condition may change in upper reaches of Susitna
- **Burst** swimming speed useful to understand fish movement across discrete rapids/riffles or high velocity areas

Fish Swimming Performance

COMMON NAME		F	PROLONGED SPEED	BURST SPEED			
		ft/s	References	ft/s	References		
Arctic grayling	adult	1.4 - 4.1	Katapodis (1992)	6.9 - 13.9	Bell (1991)		
	juvenile	0.5 - 0.8	Deegan et al. (2005)	NA			
Dolly Varden	adult	2.0 - 3.3	Jones et al. (1974), Beamish (1980)	3.6 - 4.4	Beamish 1980		
	juvenile	0.5-1.6*	Mesa (2004) for Bull Trout	NA			
Chinook salmon	adult	2.9 - 11.0	Bell (1991)	11.0 - 22.1	Bell (1991)		
	juvenile	0.5 - 0.9	Furniss et al. (2008)	2.0 - 2.3	Randall et al. (1987)		
Coho salmon	adult	3.1 - 10.9	Lee et al. (2003)	11.7 - 21.0	Bell (1991)		
juvenile		0.4 - 2.1	Bell (1991)				
Chum salmon	adult	1.7 - 5.1	Aaserude/Orsborn (1986), Smith/Carpenter (1987)	6.0 - 12.6	Powers and Orsborn 1985		
	juvenile	0.4 - 0.6	Smith and Carpenter (1987)	NA			
Pink salmon	adult	2.9 - 11.0	Lee et al. (2003), Bell (1991)	11.0 - 21.0	Bell (1991)		
	juvenile	0.4 - 0.5	Smith & Carpenter 1987	7.7 – 11.0	Powers & Orsborn (1985); Hawkins & Quinn (1996)		
Sockeye salmon	Sockeye salmon adult 4.0		Bell (1991)	10.0 - 21.9	Bell (1991), Bainbridge (1960)		
	juvenile	1.4 - 2.1	Bell (1991)				
Rainbow trout	adult	2.1 - 2.6	Furniss (2008)	14.0 - 20.3	Bell (1991)		
	juvenile	1.0 - 2.0	Bainbridge 1960	2.4 - 7.2	Bainbridge 1960		

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Velocity Criteria (cont)

- Swimming speed proportional to fish length Adult speed > Juvenile speed
- Gradients or channel constrictions at entrances to sloughs and side channels not sufficient to create velocity barriers for adult or juvenile fish
- Velocity barriers most likely a factor in tributaries where steep gradients create uniform, high velocity flows in chutes and waterfalls and at tributary mouths before entering the main channel (Devils Canyon velocity not measured due to safety concerns)
- Which swimming speed category best represents limitations for fish passage in Susitna River and its tributaries?

Criteria Suggestion - high-end prolonged speed and burst speed represent the fish speeds required to attain chutes and waterfalls in major tributaries Hunter and Mayor (1998) Swim Speed Equation $V = aL^b t^{-c}$ V = swim speed of fish relative to the water L = length of the fish t = time to exhaustion a,b,c = regression constants

Leaping Criteria

- Ability of fish to pass a vertical barrier is determined by:
 - species- and life stage-specific factors such as burst speed, swimming form, and leaping capability.
 - water depth, stream flow, and barrier geometry
- Leaping curves and jumping equations assume pool depth below barrier is adequate
 - 1:1.25 barrier height/leaping pool depth (Powers Orsborn 1985)
 - Pool depth at least 2.5m (Reiser and Peacock 1985)
- Other barrier considerations stream gradient
 - 8% sustained slope (CA Habitat Restoration Manual)
 - >20% for 30ft (OR Dept of Forestry)
 - w/o pools >12% for 30ft adult salmon
 - >20% for 160m (WA Dept F&W)

Leaping Criteria – literature values

COMMON NAME		LEAPING CRITERIA						
		ft	References					
Arctic grayling	adult	NA						
	juvenile							
Dolly Varden	adult	NA						
	juvenile							
Chinook salmon	adult	7.5, 7.9, 11.0	Powers and Orsborn (1984), Reiser and Peacock					
	juvenile		(1985), USFS (2001)					
Coho salmon	adult	7.5, 7.3, 11.0	Powers and Orsborn (1984), Reiser and Peacock					
	juvenile		(1985), USFS (2001)					
Chum salmon	adult	3.5, 4.0, 4.0	Powers and Orsborn (1984), Reiser and Peacock					
	juvenile		(1985), USFS (2001)					
Pink salmon	adult	3.5, 4.0, 4.0	Powers and Orsborn (1984), Reiser and Peacock					
	juvenile		(1985), USFS (2001)					
Sockeye salmon	adult	7.5, 6.9, 10.0	Powers and Orsborn (1984), Reiser and Peacock					
	juvenile		(1985), USFS (2001)					
Rainbow trout	adult	NA						
	juvenile							

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Dynamic Barriers

Tributary mouth (Sherman Creek)

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Beaver pond Whiskers Cr at FA-104 (Whiskers Slough)

Velocity Barriers – Devils Canyon

passage of adult salmon addressed by Study 9.7 (Salmon Escapement)

Impediment 1 (PRM 154.8) – Sept 11, 2012 11,600 cfs at Gold Creek 8,840 cfs at Tsusena

Impediment 3 (PRM 164.5) - Sept 7, 2012 16,500 cfs at Gold Creek 11,800 cfs at Tsusena

- Movement of radio tagged fish will be compared to discharge during spawning period by the Salmon Escapement Study 9.7
- 2012 results of 313 Chinook salmon radio tagged in Middle River, four passed through impediment 3
- 2013 results of 449 large Chinook salmon radio tagged in Middle River, three passed through impediment 3

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Permanent Barriers

Waterfall >12ft

Depth Criteria

- Water depth required to fully submerge the fish species
- Body depth of the fish plus some additional depth to account for a number of factors that could affect passage, such as:
 - Variation in individual size, behavior, and performance;
 - Possible obstacles that must be passed like debris or sediment deposits;
 - The ability to move to some degree in a vertical plane for predator avoidance, or injury prevention (i.e., no contact with solid surfaces)
- "the minimum water depth necessary to minimize wave induced swimming forces is two and one half times the height of the caudal fin" (ADF&G and AKDT&PF 2001).

Figure A-2. Minimum water depths for fish passage (D = height of caudal fin).

Depth Criteria – literature values

COMMON NAME			DEPTH CRITERIA			
		Ft	References			
Arctic grayling	adult	0.6	ADFG (2001)			
	juvenile	0.4	ADFG (2001)			
Dolly Varden	adult	0.2 - 1.0	ADFG (1985)			
	juvenile	0.2	Bugert et al. (1991)			
Chinook salmon	adult	0.8 - 0.9	OSGC (1963), R2 CDFG 2013			
	juvenile	0.3	R2 CDFG (2013)			
Coho salmon	adult	0.6 - 0.7	R2 CDFG (2013)			
	juvenile	0.3	R2 CDFG (2013)			
Chum salmon	adult	0.6 - 0.8	Thompson (1972), Bates et al. (2003)			
	juvenile	0.3	Young, C. (2009)			
Pink salmon	adult	0.6 - 0.8	Thompson (1972), Bates et al. (2003)			
	juvenile	0.3	Nordlund, B. (2008)			
Sockeye salmon	adult	0.6 – 0.7	Bates et al. (2003)			
	juvenile	0.3	Nordlund, B. (2008)			
Rainbow trout	adult	0.5 - 0.7	Snider (1985), R2 CDFG (2013)			
	juvenile	0.3	R2 CDFG (2013)			

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

-

Potential Depth Barrier

Whisker Slough Mouth at FA-104 (Whiskers Slough)

upstream view

downstream view

July 18 2013, Susitna R at Gold Creek 16,000-20,000 cfs

Passage Criteria and Fish Abundance/Habitat Use

- Fish abundance and habitat use considerations
 - Upper River
 - Arctic Grayling (all habitats; MC,SC,BW, CWP, SS)
 - Chinook and Dolly Varden less abundant
 - Middle River
 - Tributaries Chinook, Coho, Chum, Pink
 - Sloughs Chum, Sockeye, some Pink
 - Side Channel/Mainstem limited use by Chum, Coho, Sockeye
- **Periodicity** adult anadromous migration, and resident/juvenile migrations
- Leaping and Velocity criteria –tributary vertical barriers and mouths
- **Depth** Criteria Focus Areas and Tributary Mouths
 - Upstream adult anadromous migration
 - Downstream anadromous juvenile and migratory resident movement between summer rearing and overwintering habitats

Study 9.5/9.6 FDA Adult and Juvenile Resident Fish Counts by Macrohabitat 2013

	Dolly		Arctic	Rainbow						
Macrohabitat	Varden	Burbot	grayling	trout						
		Upper River 11 108								
Black River		11	108							
Clearwater Plume		18	17							
Goose Creek			1502							
Jay Creek	137	3	42							
Kosina Creek			180							
Main Channel		58	270							
Oshetna River		16	227							
Side Channel		3	17							
Side Slough	15		29							
Tsisi Creek			198							
Unnamed Tributary 194.8	71		16							
Upland Slough		1	19							
Watana Creek	520		1008							
	Middle	e River Abo	ve Devils (Canyon						
Backwater	1	5	110							
Chinook Creek	63									
Clearwater Plume	2	3	299							
Fog Creek	256									
Main Channel	3	13	141							
Side Channel		6	150							
Side Slough	11	13	727							
Tributary Mouth	2	4	42							
Tsusena Creek	4		74							

	Dolly		Arctic	Rainbow
Macrohabitat	Varden	Burbot	grayling	trout
	Middle	e River Belo	w Devils C	anyon
Backwater	4	38	21	4
Clearwater Plume		4	33	13
Main Channel	4	52	41	24
Side Channel	7	35	16	6
Side Slough	3	39	49	22
Side Slough Beaver Complex		19	2	6
Tributary	16	37	101	141
Tributary Mouth	27	4	49	17
Upland Slough		39	1	12
Upland Slough Beaver Complex	8	82	2	26

Preliminary data, may not contain all data sources, subject to QC

Study 9.5/9.6 FDA Juvenile Anadromous Fish Counts by Macrohabitat 2013

Macrohabitat	Chinook	Chum	Coho	Pink	Sockeye						
		Upper River									
Black River	69										
Clearwater Plume											
Goose Creek											
Jay Creek											
Kosina Creek	116										
Main Channel											
Oshetna River	2										
Side Channel											
Side Slough											
Tsisi Creek											
Unnamed Tributary 194.8											
Upland Slough											
Watana Creek											
	Middle	River A	bove D	evils	Canyon						
Backwater	1										
Chinook Creek											
Clearwater Plume											
Fog Creek											
Main Channel											
Side Channel											
Side Slough											
Tributary Mouth											
Tsusena Creek											

Macrohabitat	Chinook	Chum	Coho	Pink	Sockeye					
	Middle River Below Devils Canyon									
Backwater	30		104	4	98					
Clearwater Plume	5		49		8					
Main Channel	6		5		1					
Side Channel	121	17	321		174					
Side Slough	77		412	1	235					
Side Slough Beaver Complex	62	4	217		992					
Tributary	170	1	880		40					
Tributary Mouth	12	6	309		17					
Upland Slough	22		205		10					
Upland Slough Beaver Complex	543	1	2947		29					

Preliminary data, may not contain all data sources, subject to QC

Adult Anadromous Spawning by Macrohabitat 1980s

1980s periodicity and habitat observations

	Presence (p 101, Table 8.1-1)						Peak Use Period (All River) (p 83, Table S-1)					Spawning Habitat (Primary and/or Secondary) (p 105, Fig. S-1)				
	Presence (p 101, Table 8.1-1)						Peak Use Period (All River) (p 83, Table S-1)					Spawning Habitat (Primary and/or Secondary) (p 105, Fig. S-1)				
Common Name	Lower River	Lower Middle	Upper Middle	Upper River	Tribs	June	July	Aug.	Sept	Oct.	Main- stem	Side Channel	Side Slough	Trib		
Arctic grayling	Х	Х	Х	Х	Х											
Dolly Varden	х	x	x		x											
Chinook salmon Chinook salmon, Spawning	Х	х	х	х	x									1		
Coho salmon Coho salmon, Spawning	х	x			x						-			1		
Chum salmon Chum salmon, Spawning	х	x			x						- 2	2	1	1		
Pink salmon Pink salmon, Spawning	х	x			x						_	2	2	1		
Sockeye salmon Sockeye salmon, Spawning	x	x			x	A A E	3 A	AB		B B			1			
Rainbow trout	х	Х			Х											
									Key Off-Peak Use, Adult Peak Use, Adult Migration							
	N	Peal otes:	k Use 1st (A	, Spav) and 2	vning 2nd (B)	run	_									
SUSITNA-WATANA HYDRO Clea	ears. s a	ockey fadul pawn reas f	e exhi It migi ing, ai or spa	bit dis ration nd use awnin	stinct t and separ g.	i ming ate										

Passage Criteria Application

- Depth Criteria application
 - 1980s depth x distance curves for uniform and non-uniform substrate with Chum as surrogate for salmonids 0.41 ft uniform, 0.54 ft non-uniform
 - Lang et al. (2004) determined the limiting depth to be the shallowest point over a riffle following the thalweg in the stream wise direction
 - Min depth for 25% total, full 10% of transect width (Thompson 1972)

Passage Criteria Application

- Integration with modeling
 - Fluvial Geomorphology Study 6.5 depth threshold magnitude and frequency with 2-D model runs including upstream/downstream velocity, hydraulic dynamics and sediment aggradation/degradation, channelization and tributary mouth barriers, formation and removal of barriers under project conditions
 - Ice Processes Study 7.6 address juvenile fish passage during ice-cover periods with 1-D and 2-D models including ice formation and breakup; ice thickness, elevation, and blockage of off-channels and tributary deltas; passageways beneath ice and changes in ice-free at slough entrances

Application of Depth Criteria – 1980s depth/distance Chum as surrogate for salmonids

Figure 6-4. Passage depth requirements for chum salmon as a function of passage reach length within sloughs and side channels having substrates less than 3.0 inches in diameter, uniform morphology and water velocities less than 2.0 ft/sec.

Application of Depth Criteria – 1980s depth/distance Chum as surrogate for salmonids

Figure 6-5. Passage depth requirements for chum salmon as a function of passage reach length within sloughs and side channels having substrates greater than 3.0 inches in diameter, non-uniform, braided and obstructed channels and velocities less than 2.0 ft/sec.

Application Depth Criteria – slough and SC habitats Breaching, backwater, local flows

Figure 6-3. Flow chart displaying the methods employed to evaluate passage reach conditions.

Study 6.5 Geomorphology – Objectives

- Estimate formation of deltas at reservoir inflows to evaluate potential effects on upstream fish passage
 - Study area: proposed Watana
 Dam (PRM 187.1) to
 5 miles upstream max
 pool (PRM 238)

28

Study 6.6 Fluv. Geo. Modeling – Objectives

- Develop sediment inflows for tributaries
 - Couple sediment rating curves with flow series at surveyed tributaries
 - Apply regional relationships or regression equations (from surveyed tributaries) at nonsurveyed tributaries
 - Model sediment transport and deposition processes at select tributary mouths

Upper River Tributaries

Recommended Selection of Upper River Tributaries³¹

										riers Elim	inated by	
					2012/20 ⁻	13 Fish [Distributior	1		Reserv	oir ¹	
		D.A.				Dolly	Round	Arctic				Rationale for
Tributary	PRM	(mi²)	Bank	Chinook	Burbot	Varden	Whitefish	Grayling	Туре	Trib RM	Elevation ²	Exclusion
Oshetna R.	235.1	556.4	L	x		x	Х	x				
Goose Cr.	232.8	106.5	L	x	x		Х	x				
Un. Tributary	228.5	46.9	R									TOB @ 2,375'
Un. Tributary	215.2	2.3	L									TOB @ 2,200'
Jay Cr.	211.0	62.4	R		X	X	Х	X				
Kosina Cr.	209.1	402.5	L	X	X	X	х	X				
Un. Tributary	204.5	12.3	L						cmpd.	0.4 & 0.6	1830&1925	Steep ch.
Un. Tributary	203.4	19.5	R									TOB @ 2.030'
Un. Tributary	198.4	1.8	L			X						Small D.A
Un. Tributary	197.7	8.1	L						falls	1.3	1990	Steep ch.
Watana Cr.	196.9	176.4	R	X	x	X	х	X				
Un. Tributary	194.8	23.2	R			x		x				
Un. Tributary	189.7	1.9	L						chute	0.4	1990	Small D.A.
Deadman Cr.	189.4	175.4	R		X	X	X	X	falls	0.6	1760	

¹ Identified fish passage barriers potentially inundated by the proposed Watana Reservoir

Reservoir max pool = 2,050 feet (NAVD88) with upper extent at PRM 232.5,

Reservoir low pool = 1,850 feet (NAVD88) with upper extent at PRM 222.5

² Elevation at the top of the barrier, as estimated using 2011 MatSu LiDAR (feet, NAVD88)

Indicates candidate tributary recommended for delta modeling Indicates candidate tributary recommended for exclusion from delta modeling

Recommended Selection of Upper River Tributaries

Middle River Tributaries Upstream and Within Devils Canyon

Recommended Selection of Middle River Tributaries Upstream and Within Devils Canyon

			Lake Presence ¹				2012/2013 Fish Distribution					
							No. of	No. of				
		D.A.			Focus	Evidence of	Resident	Salmon				
Tributary	PRM	(mi ²)	Trib RM	Area (ac)	Area	ActiveFan	Species	Species	Interest ²			
Upstream of Devils Canyon												
Tsusena Cr.	184.6	145.4			184	Yes	4	1	S,B,F			
Fog Cr.	179.3	149.7				Yes	4	1	S,B,F			
Un. Tributary	174.3	4,4	1.0 & 1.8	62.3 & 235	173	No			S			
Un. Tributary	173.8	8.6			173	Yes	4		S,F			
Within Devils Canyon												
Devil Cr.	164.8	74.4				No		1	В			
Devils Canyon Impediment 3 (PRM 164.5)												
Chinook Cr.	160.5	24				Yes	2	1	S,B,F			
Devils Canyon Impediment 2 (PRM 160.2)												
Cheechako Cr.	155.9	34.4				No		1	В			
Devils Canyon Impediment 1 (PRM 154.8)												

¹ Large lakes near the tributary mouth trap sediment and prevent formation of fans

² S = sediment supply (Study 6.6); B = fish passage barrier (Study 9.12); F = depositional fan (Study 6.5)

Indicates candidate tributary recommended for delta modeling Indicates candidate tributary recommended for exclusion from delta modeling Basis of recommendation for exclusion SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Recommended Selection of Middle River Tributaries Upstream and Within Devils Canyon

Middle River Tributaries Downstream of Devils Canyon

Recommended Selection of Middle River Tributaries Downstream of Devils Canyon

			Lake Presence ¹				2012/2013 Fish Distribution		
							No. of	No. of	
		D.A.			Focus	Evidence of	Resident	Salmon	
Tributary	PRM	(mi ²)	Trib RM	Area (ac)	Area	ActiveFan	Species	Species	Interest ³
Portage Cr.	152.3	179.1			151	Yes	2	5	S,F
Jack Long Cr.	148.3	19.1				No		2	В
Un. Tributary ⁴	144.6	5.0			144	Yes			S,F
Indian River	142.1	81.9			141	Yes	9	5	S,F
Gold Cr.	140.1	24.6				Yes	1	3	S,B,F
Fourth of July Cr.	134.3	23.4				Yes	2	5	S,B,F
Sherman Cr.	134.1	7.1				Yes		1	S,B,F
Skull Cr.	128.1	4.3			128	Yes	4	4	S,F
Fifth of July Cr.	127.3	7.1				Minimal	3	4	S,B,F
Deadhorse Cr.	124.4	4.7				Yes			S,B,F
Little Portage Cr.	121.4	2.5	0.9	7.4		No			В
McKenzie Cr.	120.2	2.1				No			В
L. McKenzie Cr.	119.7	2.6	1.2 & 1.3	17.5 & 29.9		No			В
Lane Cr.	117.2	11.4				Yes	1	4	S,B,F
Un. Tributary	115.4	2.7			115	No	4	3	n/a
Gash Cr.	115.0	1.9	0.6	19.6	113	No	6	1	S
Slash Cr.	114.9	1.8			113	No			S
Un. Tributary	113.7	2.0			113	Yes	4	1	S,F
Chase Cr.	110.5	4.9	1.3	25.5		No	6	2	B
Whiskers Cr.	105.1	18.2			104	No	9	5	S

¹ Large lakes near the tributary mouth trap sediment and prevent formation of fans

 2 S = sediment supply (Study 6.6); B = fish passage barrier (Study 9.12); F = depositional fan (Study 6.5)

SUSITN³ No surface flow at mouth during July 2013 survey

Indicates candidate tributary recommended for delta modeling Indicates candidate tributary recommended for exclusion from delta modeling Basis of recommendation for exclusion

Recommended Selection of Middle River Tributaries Downstream of Devils Canyon

DISCUSSION