

Fluvial Geomorphology: Channel / Floodplain Evolution Model; Hydraulic and Sediment Modeling Study Objectives

Riparian IFS Technical Meeting Day one

April 29 and 30, 2014

Prepared by Tetra Tech

4/29-30/2014

Presentation Content

- Geomorphology studies relationship to Riparian IFS
- Overview of models and other products from the Geomorphology studies
- Discussion of information and metrics to be provided by the Geomorphology studies

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Geomorphology Study Provides to Riparian IFS

- Overall purpose: Assist in identification and quantification of geomorphic processes
 - Inundation relationships for surfaces
 - Building/accretion of floodplain surfaces
 - Disturbance of bars and channel margins
 - Erosion of floodplain
- Metric for each of the above bullets

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

The Most Relevant Tools and Products from the Geomorphology Studies

- Aerial photography Current and historical
 - Mapping of geomorphic features
 - Channel change (1950s/1980s/Current)
 - Turnover analysis (1950s -1980s/1980s-current)
- LiDAR Elevation of surfaces
- Large woody debris mapping and assessment
- Sediment transport relationships USGS data from 1980s and current
- Hydraulic and bed evolution modeling 1-D and 2-D

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Fluvial Geomorphology Modeling – Information to Support Other Resource Areas

Note: Items in green directly support Riparian IFS

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/29-30/2014

-

Fluvial Geomorphology Modeling (FGM) Approach - Models

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION

Studies 6.5 & 6.6

Inundation Discussion and Metric

- Tools
 - Aerials and geomorphic mapping
 - Modeled water surface elevations
 - Topography (LiDAR)
 - Hydrology: Flow duration / flood frequency curves

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/29-30/2014

DRAFT – SUBJECT TO REVISION

Studies 6.5 & 6.6

Flood Frequency

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/29-30/2014

Depth (ft) 50k cfs, ~2-year

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION

Studies 6.5 & 6.6

Depth (ft) 65k cfs, ~10-year

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/29-30/2014

DRAFT – SUBJECT TO REVISION

Studies 6.5 & 6.6

Depth(ft) 75k cfs, ~20-year

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION Studie

Studies 6.5 & 6.6 11

Depth(ft) 87k cfs, ~50-year

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION Studies 6.5 & 6.6

Depth(ft) 100k cfs, ~ 100-year

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION Studies 6.5 & 6.6

Overtopping Discharge

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION Studies 6.5 & 6.6 14

Overtopping Discharge – FA-128 (Slough 8A)

	Overtopping	Flood Frequency (years)	Flow Duration (days/year)
Geomorphic Feature	Discharge (cfs)	Pre-Dam	Pre-Dam
Main			
Channel Gravel Bar	16,190	<1	101
Side Channel	10,150	~1	101
Gravel Bar	24,030	<1	44
Vegetated Bar	48,320	2.7	1.2
Young Flood Plain	54,840	4.5	0.7
Overbank Channel	56,080	5.0	0.6
Mature Flood	ŕ		
Plain	77,870	25	0.1
Old Flood Plain	87,570	50	

SUSITNA-WATANA HYDRO

Clean, reliable energy for the next 100 years.

4/29-30/2014

Inundation Metric

- Information
 - 2-D model results indicating discharge that inundates various surfaces
 - Flow duration providing time interval discharges are exceeded
- Using GIS develop, time interval various elevations in the Focus Areas are inundated pre- and post-Project

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Overtopping Discharge FA-128 (Slough 8A)

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/29-30/2014

DRAFT – SUBJECT TO REVISION Studies 6.5 & 6.6

Geomorphic Succession

4/29-30/2014

DRAFT – SUBJECT TO REVISION

Studies 6.5 & 6.6 18

Discussion - Aerial Photography

- Aerial Photography: 1950s, 1980s and current
- Products
 - Geomorphic feature mapping
 - Channel change
 - Turnover analysis

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Comparative Era Aerials

4/29-30/2014

Comparative Geomorphic Features in FA-128 (Slough 8A)

4/29-30/2014

1950s to 1980s Channel Change in FA-128 (Slough 8A)

1980s to 2012 Channel Change in FA-128 (Slough 8A)

4/29-30/2014

1950s to 1980s Turnover in FA-128 (Slough 8A)

Turnover Areas – FA-128 (Slough 8A)

1950s to 1980s

Date	1980s Land (ac)	1980s Chan. (ac)	Total Area (ac)
1950s Land	412	37	450
1950s Channel	103	285	389
Total Area	516	323	838

1980s to 2012

Date	2012 Land (ac)	2012 Chan. (ac)	Total Area (ac)
1980s			
Land	486	30	516
1980s			
Channel	45	278	323
Total			
Area	530	308	838

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Side Channel and Side Slough Dynamics

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/29-30/2014

1

DRAFT – SUBJECT TO REVISION Studies 6.5 & 6.6

Discussion – Floodplain Accretion Metric

- Sediment Delivery Index (SDI)
 - Duration of inundation
 - Suspended sediment load

DRAFT – SUBJECT TO REVISION Studies 6.5 & 6.6

2013 Field Observations

BANK SAMPLE: Young Floodplain Surface

DRAFT TO SUBJECT TO REVISION

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

2013 Field Observations

BANK SAMPLE: Terrace Surface

124/29-30/2014

DRAFT T SUBJECT TO REVISION

Samples

BK - 5

BK - 4

BK - 3

Duration of Inundation

Suspended Sediment Load

Studies 6.5 & 6.6

Flow Duration

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/29-30/2014

Sediment Delivery Index (SDI) Metric

- Determine SDI for existing conditions
- Identify current rates of accretion from Riparian study
- Relate or normalize to existing SDI
- Determine SDI for altered frequency of inundation and suspended sediment load for various surfaces under Project Scenarios
- Post-Project accretion rates is existing accretion rate multiplied by ratio of post-Project SDI / pre-Project SDI

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Discussion – Channel Migration and Bank Erosion Metric (BEI)

- Bank Energy Index (BEI) Metric
 - Quantifies energy expended on the banks
 - Does not account for erodibility of bank materials or local controls
 - Comparative analysis
 - Among locations with similar material and erodibility
 - Among alternatives at a specific location

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Components of BEI Analysis

- Hydrology
- Hydraulics
- Effects of bend geometry on shear stress against bank

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/29-30/2014

DRAFT – SUBJECT TO REVISION Studies 6.5 & 6.6 34

How is BEI Calculated?

Integrate stream power over flow duration curve:

BEI₀ = ∫Ωdt

 Ω = Stream power

= v* τ

v = avg channel velocity

 τ = shear stress

- = $K_b^* \gamma^*$ Depth*Slope
- Accounts for both:
 - Range of hydraulic conditions
 - Duration of flows

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Adjustment Factor for Bend Effects

 Shear stress (and stream power) increase as function of bend geometry

SUSITNA-WATANA HYDRO Clean, reliable energy

Clean, reliable energy for the next 100 years.

4/29-30/2014

What do we mean by "Normalized"?

Normalized $BEI = BEI_0 / Reach-averaged BEI$

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

4/29-30/2014

DRAFT – SUBJECT TO REVISION

Studies 6.5 & 6.6 37

Discussion – Disturbance by Flow

4/29-30/2014

Shear Stress(lbs/ft²) 65k cfs, ~ 10-year

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION Studi

Studies 6.5 & 6.6

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION

Studies 6.5 & 6.6

Questions and Further Discussion

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION Studies 6.5 & 6.6 41