

Fluvial Geomorphology: Channel / Floodplain Evolution Model;

 Hydraulic and Sediment Modeling Study ObjectivesRiparian IFS Technical Meeting Day one

April 29 and 30, 2014

Prepared by Tetra Tech

Presentation Content

- Geomorphology studies relationship to Riparian IFS
- Overview of models and other products from the Geomorphology studies
- Discussion of information and metrics to be provided by the Geomorphology studies

Geomorphology Study Provides to Riparian IFS

- Overall purpose: Assist in identification and quantification of geomorphic processes
- Inundation relationships for surfaces
- Building/accretion of floodplain surfaces
- Disturbance of bars and channel margins
- Erosion of floodplain
- Metric for each of the above bullets

The Most Relevant Tools and Products from the Geomorphology Studies

- Aerial photography - Current and historical
- Mapping of geomorphic features
- Channel change (1950s/1980s/Current)
- Turnover analysis (1950s -1980s/1980s-current)
- LiDAR - Elevation of surfaces
- Large woody debris mapping and assessment
- Sediment transport relationships - USGS data from 1980s and current
- Hydraulic and bed evolution modeling - 1-D and 2-D

Fluvial Geomorphology Modeling - Information to Support Other Resource Areas
Change in hydrologic and sediment supply regimes
(existing conditions and operational scenarios)

Hydraulics

Sediment Transport

Potential Project Effects on location, extent, magnitude, duration, timing \& frequency

Velocity
Channel Top Width Effective Discharge Sediment Loads

Flow Depths
Shear Stress
Bed Material Composition
Sediment Concentrations
Bank Instability/Channel Migration (BEI)
\#/lengths/areas of types of channel

Water Surface Elevations
Aggradation/Degradation
Bed Material Mobility
Floodplain Accretion (SDI)
LWD production/transport
Areas of Island and floodplain features

Note: Items in green directly support Riparian IFS

Fluvial Geomorphology Modeling (FGM) Approach - Models

1-D Tributary Sediment Transport Modeling (Sediment Rating Curves)

1-D Morphology Modeling (HEC-6T ?, HEC-RAS V4.2)
2-D Morphology Modeling
(SRH-2D or River2B)

2-D Hydraulic Modeling for Habitat Model inputs (SRH-2D or River2D?)

Inundation Discussion and Metric

- Tools
- Aerials and geomorphic mapping
- Modeled water surface elevations
- Topography (LiDAR)
- Hydrology: Flow duration / flood frequency curves

Flood Frequency

Depth (ft) 50k cfs, ~2-year

Depth (ft) 65k cfs, ~10-year

Depth(ft) 75k cfs, ~20-year

Depth(ft) 87k cfs, ~50-year

Depth(ft) 100k cfs, ~ 100-year

Overtopping Discharge

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Overtopping Discharge - FA-128 (Slough 8A)

| Geomorphic | Overtopping
 Discharge
 (cfs) | Freood
 Feature | Prears) |
| :--- | :---: | :---: | :---: | | Flow |
| :---: |
| Duration |
| (days/year) |

Inundation Metric

- Information
- 2-D model results indicating discharge that inundates various surfaces
- Flow duration providing time interval discharges are exceeded
- Using GIS develop, time interval various elevations in the Focus Areas are inundated pre- and post-Project

Overtopping Discharge FA-128 (Slough 8A)

Geomorphic Succession

Discussion - Aerial Photography

- Aerial Photography: 1950s, 1980s and current
- Products
- Geomorphic feature mapping
- Channel change
- Turnover analysis

Comparative Era Aerials

Comparative Geomorphic Features in FA-128 (Slough 8A)

1950s to 1980s Channel Change in FA-128 (Slough 8A)

1950s to 1980s Turnover in FA-128 (Slough 8A)

Channel in both years
Floodplain in both years

1980s to 2012 Turnover in FA-128 (Slough 8A)

Turnover Areas - FA-128 (Slough 8A)

1950s to 1980s			
Date	1980s Land (ac)	1980s Chan. (ac)	Total Area (ac)
1950s	412	37	450
Land	412		
Channel	103	285	389
Total Area	516	323	838

1980s to 2012

Date	2012 Land (ac)	2012 Chan. (ac)	Total Area (ac)
1980s Land	486	30	516
1980s Channel	45	278	323
Total Area	530	308	838

Side Channel and Side Slough Dynamics

(1)	(2)	(3)	(4)
\qquad tbu-wosi wer aween, ow 	 on loc Inenso (T)		
(5) vecranos couvers whe, swo giposird no meanow or vich 	(6) now heover on (0)	© apmennow or swos we vcorwnow colowanow cuer mind or an wo 	W6 TETRA TECH

Discussion - Floodplain Accretion Metric

- Sediment Delivery Index (SDI)
- Duration of inundation
- Suspended sediment load

2013 Field Observations

BANK SAMPLE:
 Young Floodplain Surface

Bank Profile Log
SUSITNA-WATANA HYDRO

River:	Susitna River	Waypoint	WP4
Date/Time:	$09 / 23 / 2013$	Sampled By: Mike Harvey	
Field Book\#:	Book 2-MDH	Photos:	P5664 - MDH
Bank Height (ft):	3 feet	Focus Area:	Whiskers Slough
Bank Angle (deg): Vertical	Geomorphic Surface:		

2013 Field Observations

BANK SAMPLE:

Terrace Surface

Bank Profile Log

River:	$\frac{\text { Susitna River }}{}$
Date/Time:	$09 / 23 / 2013$
Field Book\#:	Book 2 - MDH
Bank Height (ft):	7 feet

- 2

SUSITNA-WATANA HYDRO

Waypoint	WP2
Sampled By:	Mike Harvey
Photos:	P5662-MDH
Focus Area:	Whiskers Slough
Geomorphic Surface:	

55

Duration of Inundation

Suspended Sediment Load

Flow Duration

Sediment Delivery Index (SDI) Metric

- Determine SDI for existing conditions
- Identify current rates of accretion from Riparian study
- Relate or normalize to existing SDI
- Determine SDI for altered frequency of inundation and suspended sediment load for various surfaces under Project Scenarios
- Post-Project accretion rates is existing accretion rate multiplied by ratio of post-Project SDI / pre-Project SDI

Discussion - Channel Migration and Bank Erosion Metric (BEI)

- Bank Energy Index (BEI) Metric
- Quantifies energy expended on the banks
- Does not account for erodibility of bank materials or local controls
- Comparative analysis
- Among locations with similar material and erodibility
- Among alternatives at a specific location

Components of BEI Analysis

- Hydrology
- Hydraulics
- Effects of bend geometry on shear stress against bank

How is BEI Calculated?

- Integrate stream power over flow duration curve:

$$
\mathrm{BEI}_{0}=\int \Omega \mathrm{dt}
$$

$$
\begin{aligned}
\Omega & =\text { Stream power } \\
& =v^{*} \tau \\
v & =\text { avg channel velocity } \\
\tau & =\text { shear stress } \\
& =K_{b}{ }^{*} \gamma^{*} \text { Depth*Slope }
\end{aligned}
$$

- Accounts for both:
- Range of hydraulic conditions
- Duration of flows

Adjustment Factor for Bend Effects

- Shear stress (and stream power) increase as function of bend geometry

What do we mean by "Normalized"?

Normalized BEI $=\mathrm{BEI}_{0} /$ Reach-averaged BEI
$\mathrm{BEI}=1 \Longrightarrow$ Same as reach-average
$B E I<1 \longrightarrow$ Less than reach-average
(less erosion potential)
BEI>1 ${ }^{\text {Geater than reach-average }}$
(more erosion potential)

Discussion - Disturbance by Flow

Metrics from 2-D model:
 - Shear stress
 - Bed mobilization

Critical Diameter (mm)

Shear Stress(lbs/ft²) 65k cfs, ~ 10-year

$\mathrm{D}_{\text {critical }}(\mathrm{mm}) 65 \mathrm{k}$ cfs,~ 10-year

Phi, mm
FA-128 (Slough 8A)

8, 256
7,128
6, 64
5,32
4,16
3, 8
2, 4
1, 2
0, 1

Questions and Further Discussion

