

Instream Flow Technical Team (TT) Meeting

Study 8.5 IFS

Indicators of Hydrologic Alteration (IHA)

March 21, 2014

Prepared by R2 Resource Consultants

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

21 March 2014

Topics Discussed

- Indicators of Hydrologic Alteration (IHA) <u>and</u> Environmental Flow Components (EFC)
 - Parameters
 - Limitations
- Candidate Metrics
- Proposed Analysis

Indicators of Hydrologic Alteration

- Developed by The Nature Conservancy (TNC)
- Provides hydrologic metrics to evaluate flow regimes under Existing/Baseline Conditions vs. Regulated Conditions
 - Magnitude, frequency, timing, duration and rate of change
- Considers "environmental flows"
 - "The quantity and timing of water flows required to maintain the components, functions, processes and resilience of aquatic ecosystems and sustain the goods and services they provide to people" (TNC)

- 33 Traditional IHA Parameters
 - 5 Groups
 - 1. Magnitude of monthly water conditions
 - 2. Magnitude and duration of annual extreme water conditions
 - 3. Timing of annual extreme water conditions
 - 4. Frequency and duration of high and low pulses
 - 5. Rate and frequency of water condition changes

- 33 Traditional IHA Parameters
 - 5 Groups
 - 1. Magnitude of monthly water conditions
 - Average flow for each month of the year
 - 12 parameters

- 33 Traditional IHA Parameters
 - 5 Groups
 - 2. Magnitude and duration of annual extreme water conditions
 - Annual minimum and maximum of:
 - » 1, 3, 7, 30 and 90-day average flows
 - # of zero-flow days
 - Base flow: (7-day minimum flow)/(mean flow for year)
 - 12 parameters

- 33 Traditional IHA Parameters
 - 5 Groups
 - 3. Timing of annual extreme water conditions
 - Julian date of annual 1-day maximum
 - Julian day of annual 1-day minimum

- 2 parameters

- 33 Traditional IHA Parameters
 - 5 Groups
 - 4. Frequency and duration of high and low pulses
 - # of high and low flow pulses within a water year
 - Average duration of high and low flow pulses (days)

- 4 parameters

- 33 Traditional IHA Parameters
 - 5 Groups
 - 5. Rate and frequency of water condition changes
 - Rise rate
 - » Average of all positive differences between consecutive daily flow values
 - Fall rate
 - » Average of all negative differences between consecutive daily flow values
 - # of hydrologic reversals
 - 3 parameters

- 34 Environmental Flow Component (EFC) Parameters
 - Hydrographs can be divided into repeating hydrographic patterns that are ecologically relevant
 - 5 key flow events to sustain riverine ecological integrity
 - 1. Monthly low (base) flows
 - 2. Extreme low flows
 - 3. High flow pulses
 - 4. Small floods
 - 5. Large floods

- 34 Environmental Flow Component (EFC) Parameters
 - 5 key flow events to sustain riverine ecological integrity
 - 1. Monthly low (base) flows (12 parameters)
 - Average of low (base) flows for each calendar month

- 34 Environmental Flow Component (EFC) Parameters
 - 5 key flow events to sustain riverine ecological integrity
 - 2. Extreme low flows (4 parameters)
 - Average peak (minimum) value
 - Average duration (days)
 - Average timing (Julian date)
 - Frequency of extreme low flows during water year

- 34 Environmental Flow Component (EFC) Parameters
 - 5 key flow events to sustain riverine ecological integrity
 - 3. High flow pulses (6 parameters)
 - Average peak (maximum) value
 - Average duration (days)
 - Average timing (Julian date)
 - Average rise rate
 - Average fall rate
 - Frequency of high flow pulses during water year

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

21 March 2014

- 34 Environmental Flow Component (EFC) Parameters
 - 5 key flow events to sustain riverine ecological integrity
 - 4. Small floods (6 parameters)
 - Average peak (maximum) value
 - Average duration (days)
 - Average timing (Julian date)
 - Average rise rate
 - Average fall rate
 - Frequency of small floods during water year

- 34 Environmental Flow Component (EFC) Parameters
 - 5 key flow events to sustain riverine ecological integrity
 - 5. Large floods (6 parameters)
 - Average peak (maximum) value
 - Average duration (days)
 - Average timing (Julian date)
 - Average rise rate
 - Average fall rate
 - Frequency of large floods during water year

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

21 March 2014

IHA Limitations

- Daily average flow data only
- 67 total parameters
 - Surplus of information difficult to make meaningful comparisons and conclusions
- Susitna River
 - Potential load following operations hourly flow changes
 - What is most ecologically relevant?
 - Adult migration
 - Spawning
 - Egg incubation
 - Juvenile Rearing
 - Outmigration

- Assess load following impacts
 - High flows
 - Low flows
 - Variability in flows
- Some could be calculated on a daily average basis within the IHA, others on an hourly basis outside of the IHA

- Annual Low Flows (4 metrics)
 - 7-day minimum
 - Baseflow
 - Number of low pulses
 - Duration of low pulses
 - Daily average or hourly
 - Daily average likely most meaningful

- Annual High Flows (4 metrics)
 - Maximum 1-hour flow
 - Number of high pulses
 - Daily average and/or hourly
 - Duration of high pulses
 - Daily average and/or hourly
 - # of freshets (where the average daily flow is greater than 1.5 times the average flow of the previous 3 days)

- Seasonal Flow Variability (3 metrics)
 - Monthly flow medians
 - Daily average likely most meaningful
 - Monthly 2-day minimum
 - Daily average and/or hourly
 - Monthly 2-day maximum
 - Daily average and/or hourly

• Importance of good input data

- Appropriate period of data record

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

21 March 2014

Candidate Metrics and Proposed Approach

- Compare existing and post-project conditions
 - Run metrics through existing and regulated conditions (OS-1 and others)
 - Identify meaningful trends and conclusions
 - Define importance of relative change caused by project effects
 - Compute Hydrologic alteration factor (HAF)
 - (regulated value-unregulated value)

unregulated value

 Allows end user to quantify the alteration a test regulated regime would cause on a given parameter compared to another

Candidate Metrics and Proposed Approach

- Compute HAF:
 - For each candidate metric (11 total)
 - For each representative year (# TBD)
- Overall Hydrologic Alteration Index (HAI)
 - If further aggregation needed
 - For each parameter: Sum the HAFs for each representative year, multiplied by a weighting factor that describes the likelihood of that type of year occurring
 - 1 value for each 11 parameters that represents overall hydrologic alteration that could be expected given a range of climatic conditions

IHA Analysis End Result

- Spatial and Temporal understanding of project effects on existing hydrologic regime
 - Compute HAF and/or overall HAI for different locations:
 - Gold Creek
 - Represents project effects on Middle River
 - Sunshine
 - Represents project effects on Lower River including influence of Chulitna and Talkeetna Rivers
 - » Measures attenuation caused by 3 rivers confluence
 - Susitna Station
 - Represents project effects on Lower River including influence of Deshka and Yentna Rivers
 - » Expected minimal project effects with significant tributary inflow up to this point
 - Compare Results