

Technical WorkGroup Meeting Q4 2013 TWG

RSP 7.6 Ice Processes Studies -Update Dec. 2, 2013

> Prepared by: Jon Zufelt, PhD, PE, Steve Ertman, PhD, PE HDR, Inc.

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Presentation Overview ²

- Camera maintenance and prep for Freeze-up
- Modeling Integration meetings (Nov 13-15)
- Modeling efforts
 - Middle River (River1D, River2D)
 - Lower River (HEC-RAS)
- Fall freeze-up data acquisition program
- White paper review of existing hydropower projects

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q4 2013 Update Camera Maintenance

- October Maintenance/Prep
 - 2013 Breakup used 12 cameras
 - 2 cameras were lost during breakup, 4 cameras did not provide very useful info
 - 14 cameras prepped for Freeze-up, some positions/views altered to provide better coverage
 - Set to 15 minute interval, new batteries/cards
 - Locations coordinated with FA GW study cameras
 - 3 sites to be installed if permits are issued for ANCSA lands

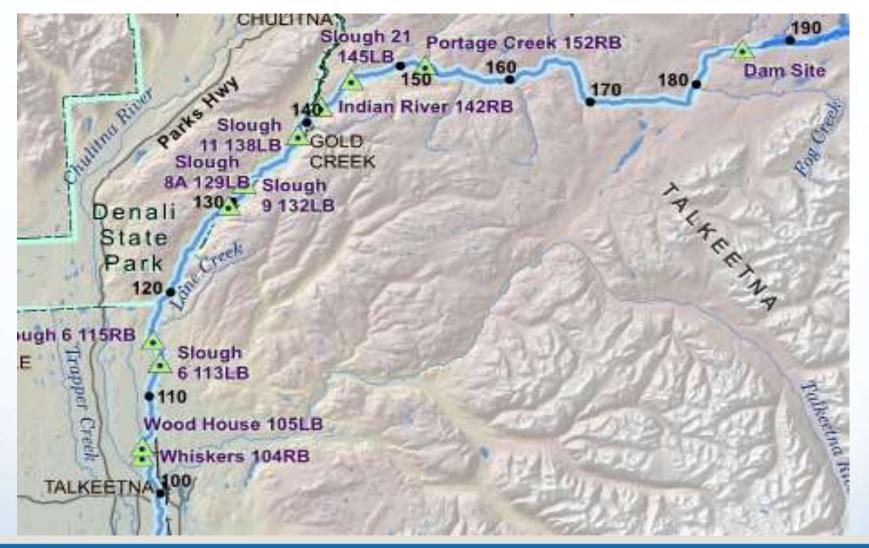
SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q4 2013 Update **Camera Locations (LR)**

DRAFT – SUBJECT TO REVISION

4

Kush


Susitna Landing 65LB

Birch Creek 91LB

90

60

RSP 7.6 – Q4 2013 Update Camera Locations (MR)

RSP 7.6 – Q4 2013 Update Camera Maintenance

Rustic/Susitna Landing sites PRM 64.2/65.2 Provides entire width of river

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q4 2013 Update Camera Maintenance

7

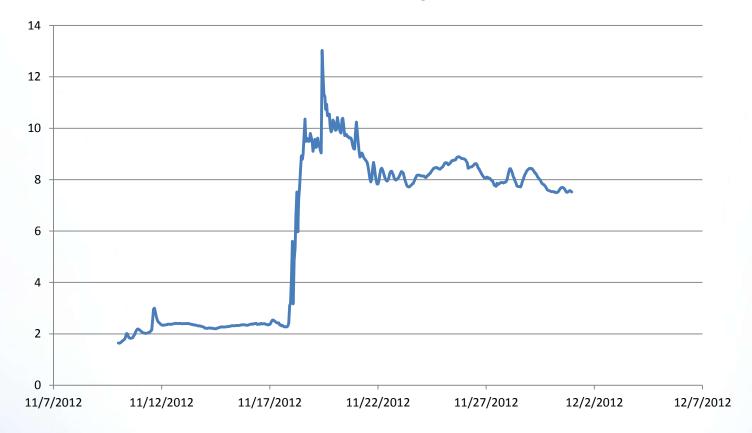
DS FA-113 (Oxbow 1) PRM 113 Good view of entire width of river Historic jamming location

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q4 2013 Update Ice Processes Modeling and Analysis

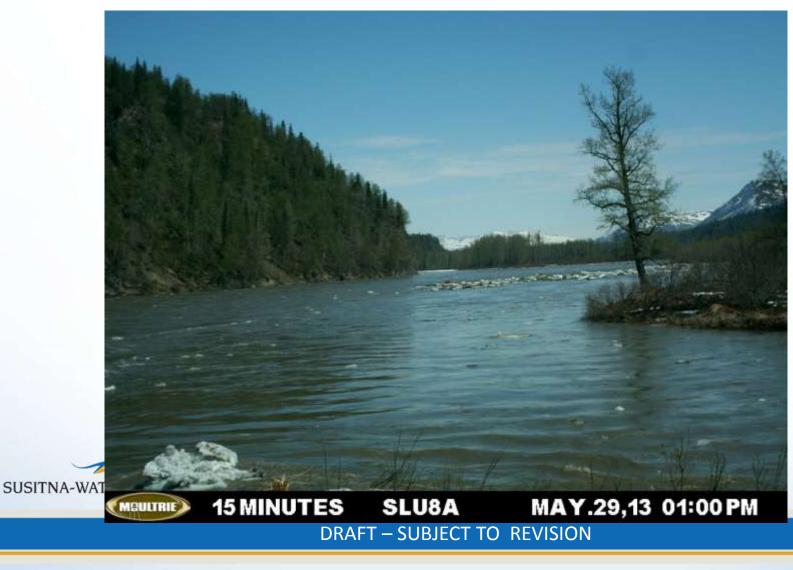
- Key Ice Questions:
 - How does ice cover formation, growth, jamming affect main channel and lateral habitats?
 - Will operational scenarios significantly change the ice impacts on main channel and lateral habitats?
 - Freeze-up processes
 - Mid-winter conditions
 - Breakup jamming

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.


ESS40, PRM 106.8 Freeze-up 2012

ESS40, PRM 106.8 Freeze-up 2012

ESS40, PRM 106.8 Freeze-up 2012



SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Slough 8A, PRM 127.9 Freeze-up 2012

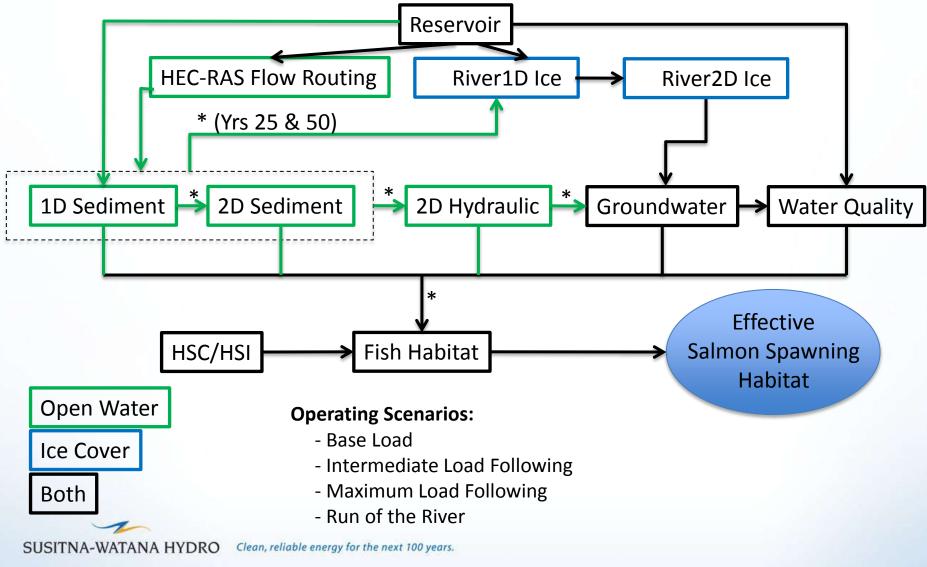
Slough 8A, PRM 127.9 Breakup 2013

RSP 7.6 – Q4 2013 Update General Modeling Approach

River1D

Dynamic ice modeling Temperature modeling Ice generation/growth Discharge Stage/under-ice depth Velocity Ice thickness

River2D


Static ice cover (specified) Temperature modeling Discharge Stage/under-ice depth Velocity (2D)

Ice Processes Modeling Team Study Lead: Jon Zufelt Lead Modeler: Steve Ertman U of A: Faye Hicks, Julia Blackburn

RO Clean, reliable energy for the next 100 years.

Model dependencies flow chart ¹⁵

RSP 7.6 – Q4 2013 Update River1D Hydraulic Overview

16

- One-dimensional hydraulic flood-routing model
- Detailed compound channels
 - Main channel
 - Right and left overbanks
- Channel resistance (calibration parameter)
 - Manning's n
 - Roughness height
- Simulates steady or unsteady flows

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q4 2013 Update River1D Hydraulics-- Continued

- Boundary Conditions
 - Upstream Inflow discharge hydrograph
 - Lateral inflow discharge hydrographs
 - Downstream stage hydrograph or normal depth
- Initial Conditions
 - Base flow
 - Initial water-surface elevation

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q4 2013 Update River1D Ice-Processes Modeling

- Conservation of thermal energy
 - Heat exchange between water and atmosphere
 - Heat exchange between ice and atmosphere
 - Heat exchange between ice and water
- Frazil ice forms when water drops below 0 ℃

 Frazil slush collects below ice cover
 Frazil ice rises as floes and aggregates as new cover
- Pore water also freezes to form new ice cover

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q4 2013 Update River1D Ice-Processes -- Continued • Heat transferred to ice cover or frazil slush from

- atmosphere or water results in melting
- Ice front progresses upstream from ice bridges

 Juxtaposition of ice floes traveling downstream
 Bridge locations must be specified ***
- Channel cross sections occluded by ice and additional hydraulic resistance of ice cover can result in dramatic changes to river stage.

RSP 7.6 – Q4 2013 Update River1D Ice-Processes Modeling

20

- Additional data requirements:
 - Air temperature
 - Inflow water temperature at upstream boundary
 - Inflow ice conditions at upstream boundary
 - Suspended frazil concentration
 - Surface ice concentration
 - Frazil floe thickness
 - Solid ice thickness
 - Locations and timing of ice bridges

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q4 2013 Update River1D Ice-Processes Modeling

- Calibration data requirements:
 - Water temperature
 - Ice front position with time
 - Solid and frazil ice concentrations
 - Ice thickness
- Output of River Ice-Processes Model
 - Water temperature
 - River stage
 - Ice profile (both position and thickness)

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q4 2013 Update Ice-Processes Modeling

22

- Capabilities Enhancements for River1D Model
 - Effort led by Dr. Faye Hicks, River Ice Research Group, University of Alberta (UA)
 - HEC-RAS to River1D geometry file converter
 - Ability to model compound channels (i.e., main channel and left/right overbanks)
 - Ability to model natural cross-section geometry
 - Ability to work directly with Imperial or SI units
 - Updating User Manual to reflect new capabilities.

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q4 2013 Update River1D Model Middle River

- Surveyed geometry at 88 cross sections
 - Main channel only. Awaiting overbank geometry to be developed by others from high-res LiDAR, MatSu LiDAR.
 - Interpolated cross sections at 0.2-mile spacing.
- Main-channel Manning's *n* from R2's HEC-RAS open-water model. Need overbank roughness.
- Upstream inflow hydrograph from USGS 15291700 (Susitna River above Tsusena Creek).
 - Calibration interval: August 11-17, 2012

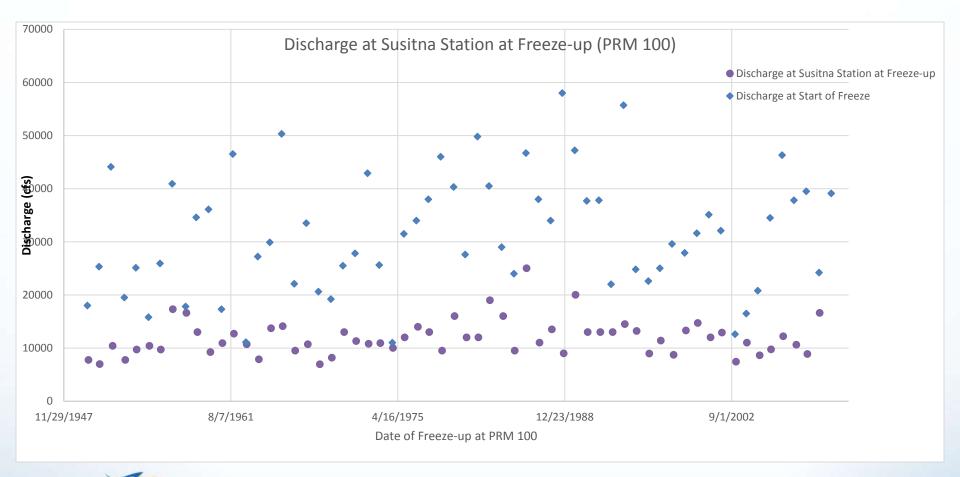
SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q4 2013 Update

24

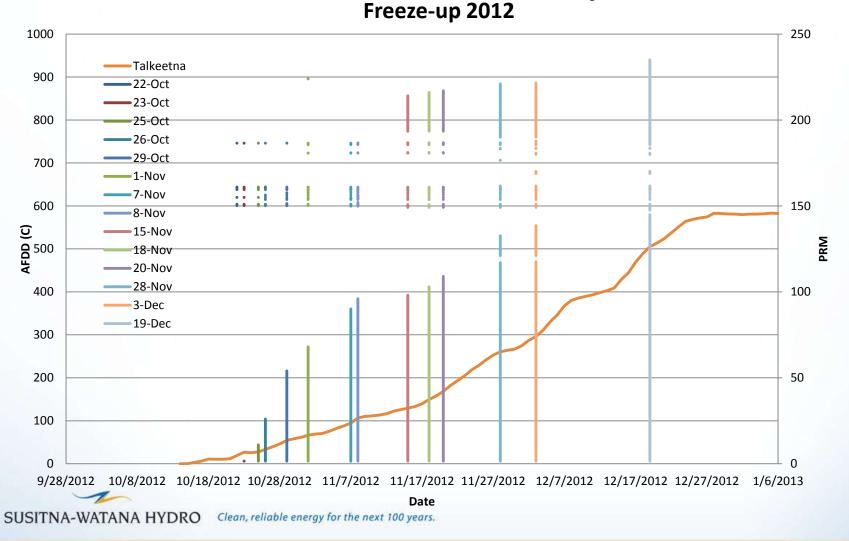
River1D Model Middle River – cont'd

- HDR validating lateral inflows at request of UA.
- Steady-flow test run conducted with successful convergence.
- Unsteady, open-water calibration (calibration interval: August 11-17, 2012) matched R2's results.
- Additional in-channel open water calibration runs to be conducted.
- HDR continues to collect and compile winter data to support ice-processes modeling.
- Input data needs for River2D open water modeling identified

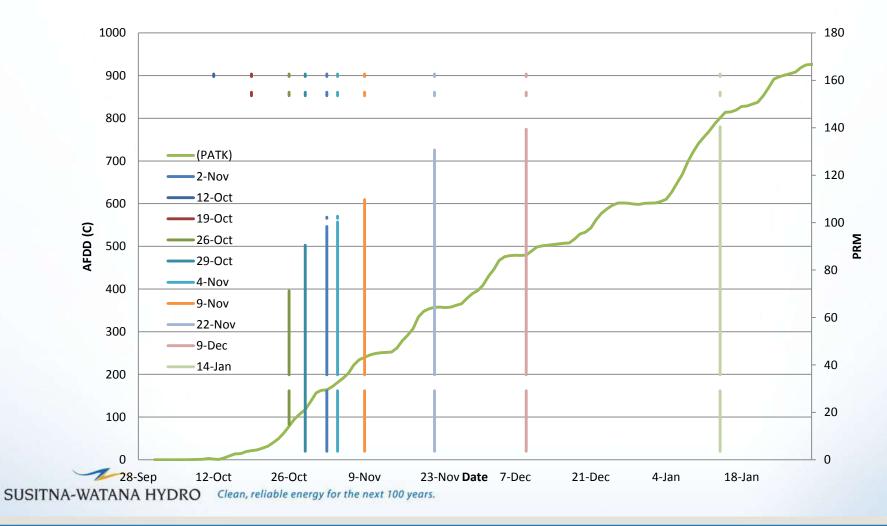

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q3 2013 Update HEC-RAS Modeling -Lower River

- Goal of the Lower River modeling to assess effects of increased winter flows on winter water and ice levels at two sites (Sunshine and Susitna Station)
- Uses existing data gathered in other studies
- In a steady sense, addition of an ice cover at Susitna Station raises the stage 6 feet (corresponds to measured freeze-up PT data)
- Raising January flow from 10K to 18K cfs results in an additional 2 ft of stage (steady model)
- Freeze-up discharges vary widely under natural conditions

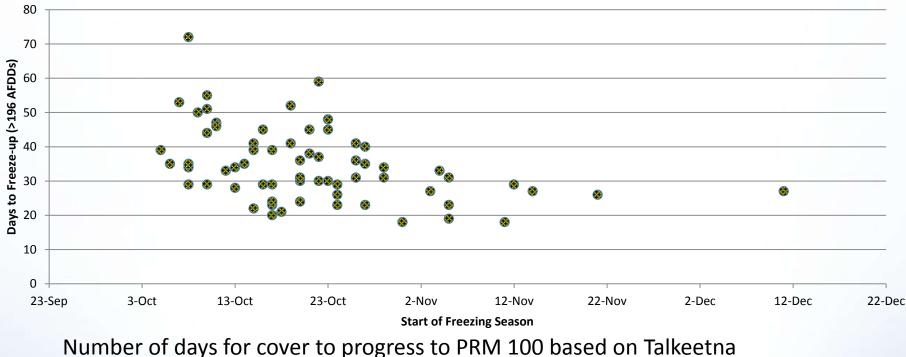

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Q3 2013 Update HEC-RAS Modeling -Lower River


SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION

DRAFT – SUBJECT TO REVISION


RSP 7.6 – Q3 2013 Update 2013 Freeze-up Freeze-up 1982

DRAFT – SUBJECT TO REVISION

Number of Days to Freeze

Freezing Start Date

temperatures. Start of Freezing this year is Nov 6, 2013.

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

vs.

11/06 Lower River – light frazil

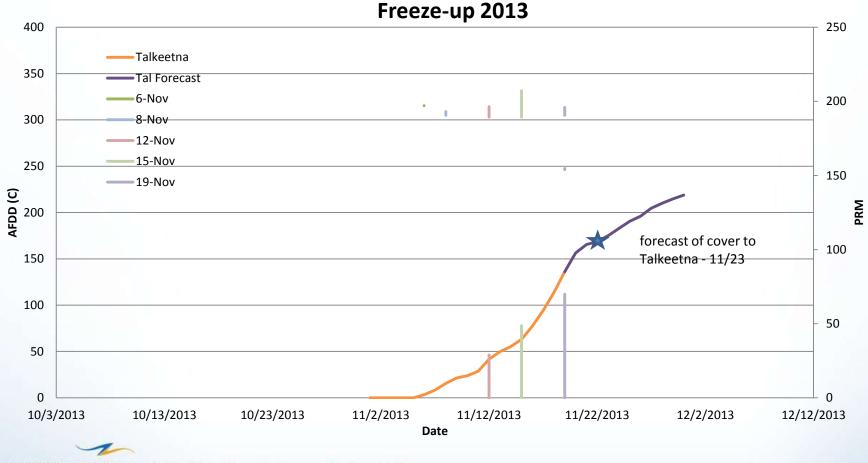
11/06 PRM 197 - few areas covered

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

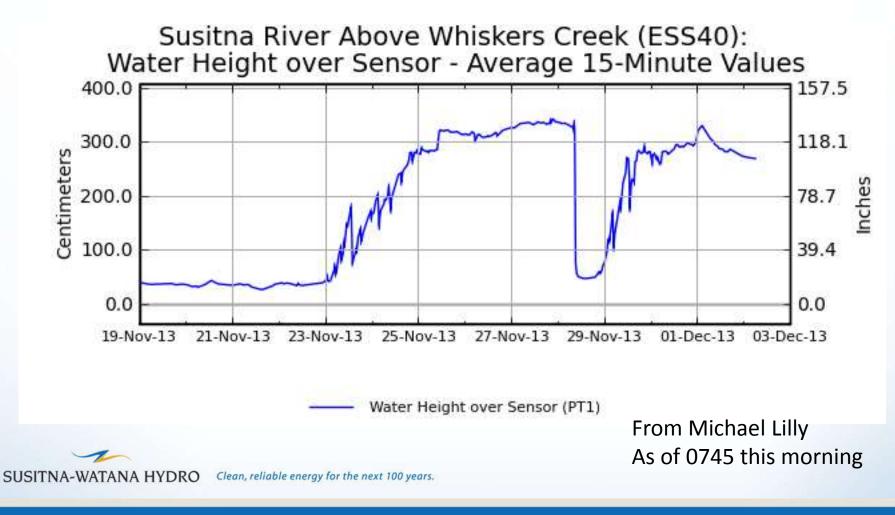
11/12 Su Station

11/12 Massive frazil jams in Canyon

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.



11/19 - Su Station and Yentna River stopped


11/19 - FA 104 Whiskers Slough main channel still open, slough frozen over

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

DRAFT – SUBJECT TO REVISION

Whiskers Slough On 11/21/2013

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Whiskers Slough On 11/25/2013

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Devil's Canyon

11/21/2013

11/25/2013

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 7.6 – Variances

No variances from Approved Study Plan

RSP 7.6 – Next Steps Plan for Q1 2104

- Continued River1D and River2D modeling (open and ice)
- 2013 Freeze-up observation program results
 - Data compilation for freeze-up modeling
 - Time Lapse Camera downloads when possible
- Open lead surveys in late January, mid-March
- Finalize White paper on impacts of hydropower (and non-hydropower changes) on winter ice regime

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.