

Technical WorkGroup Meeting Q4 2013 TWG

Glacier and Runoff Changes - Update Dec. 2, 2013

Prepared by: Dr. Gabriel Wolken, Alaska Div. of Geological & Geophysical Surveys

Study 7.7 – Q4 2013 Update

- Final Study Plan per FERC Study Plan Determination posted to AEA website
- FERC Final Study Plan covers literature review component of study
- The complete study as scoped in RSP is being conducted by AEA
- There are no variances to the literature review component (FERC required study component) and the intent is to have the results of the literature review with the ISR
- Updates to the remainder of the study is in the following slides

Study 7.7 – Q4 2013 Update

- Completed fall fieldwork
 - weather station servicing and additions
 - seasonal glacier mass balance measurements
- Continued QA/QC on 2013 meteorological data
- Completed 2013 snow radar processing phase I depth
- Continued 2013 snow radar processing phase 2 SWE
- Continued runoff model calibration/validation
- Continued runoff model module development
 - Soil heat transfer module
 - Glacier module
- Continued development of regional downscaled climate product

(All data presented are PRELIMINARY)

<u>Study 7.7 – Q4 2013 Update</u>

4

Meteorological Data

Study 7.7 – 2013 Fall Fieldwork 5

Study 7.7–2013 Fall Fieldwork ⁶

Ablation stake measurements on lower East Fork Glacier, September 2013

Ablation stake measurements on lower Maclaren Glacier, Sept. 2013

Ablation stake measurements on upper Maclaren Glacier, Sept. 2013

Study 7.7–2013 Fall Fieldwork 7

Transition to winter configuration at the onice AWS (ESG1), West Fork Glacier, Sept. 2013

Maintenance on the off-ice AWS (ESG2), above Susitna Glacier, Sept. 2013

SUSITNA-WATANA HYDRO

Clean, reliable energy for the next 100 years.

Study 7.7–2013 Fall Fieldwork

Installation of new soil temperature probes at a shrub tundra weather station near upper Kosina Creek, June 2013

Clean, reliable energy for the next 100 years.

SUSITNA-WATANA HYDRO

Servicing a weather station at a shrub tundra site near lower Windy Creek, Oct. 2013

Study 7.7–2013 Fall Fieldwork ⁹

Eureka Glacier is currently contributing to the upper Susitna watershed

View of Eureka river looking ESE at divergence, Sept. 2013.

View of Eureka river from Eureka Glacier looking S toward divergence, Sept. 2013.

Study 7.7– Weather Stations

Study 7.7– Climate Stations

MONAHAN FLAT LAKE LOUISE LAKE SUSITNA **INSIDE BASIN** TYONE LAKE MACLAREN RIVER ALPINE CREEK THE GRACIOUS HOUSE HIGH LAKE LODGE SUSITNA MEADOWS TALKEETNA AIRPORT MATANUSKA AES PALMER JOB CORPS SUTTON 1 W SHEEP MOUNTAIN LODGE TAHNETA PASS GUNSIGHT NELCHINA HIGHWAY CAM SNOWSHOE LAKE TONSINA GLENNALLEN GULKANA AIRPORT SOURDOUGH 1 N MENTASTA LAKE PAXSON RIVER PAXSON SUMMIT LAKE TRIMS CAMP **BIG DELTA AIRPORT** CANTWELL 4 E CANTWELL 2 E MCKINLEY PARK HEALY HEALY 2 NW 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000 2005 2010 Data Record

Climate Stations

Study 7.7– Met/Clim Stations

Study 7.7– Met/Clim Stations ¹³

Study 7.7– Met/Clim Stations

Study 7.7– Temperature

Temperature

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Study 7.7– Temperature

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Precipitation

Radar-derived snow-depth validation work in the upper Susitna basin.

Accumulated snow water equivalent

Study 7.7– Mass Balance

Study 7.7– Mass Balance

Mass balance model validation

24

Installing an acoustic sensor for measuring/monitoring snow/ice surface change on West Fork Glacier (ESG1), Spring 2013.

Study 7.7– Model Simulations ²⁵

Precipitation and real Evapotranspiration at Susitna River near Denali, Basin Area 2215 km2

Observed and modeled Runoff at Susitna River near Denali Observed Q = 1189 mm R2 = 0.98 NSE = 0.95 Modeled Q = 1312 mm 80 Modeled Q Ice/Fim/Snow = 511 mm 8 Observed and modeled runoff Modeled Q Ice = 254 mm \$ 8 ŝ 8 20 8 8 0 0 [m3/s] Ē Oct : Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Water balance year 1981 - 1983

Modeled mean Temperature in the Basin draining into Susitna River near Denali

Calibration Run (PRELIMINARY): 3-year Mean Water Balance for Denali Sub-Basin

> Runoff Contributions at Susitna River at Denali, WB 1981 - 83

Estimated Glacier runoff contribution Clarke (1986) = 34 %

Rain and Snow fall in the Basin draining into Susitna River near Denali

Study 7.7– Model Simulations

Study 7.7– Permafrost Modeling ²⁷

Existing measurements & modeling of permafrost

Study 7.7– Permafrost Modeling ²⁸

Study 7.7– Permafrost Modeling ²⁹

Modeled permafrost conditions and soil temperature

Study 7.7– Permafrost Modeling ³⁰

Heat Transfer Module

Recent additions/changes:

(J. Schulla & R. Daanen)

- lower boundary heat flux rather than a fixed temperature
- thermal conductivity for variable saturation
- freezing curve adjustment for variable saturation
- hydraulic conductivity dependent only on liquid water

Saturated vs. unsaturated soil temperature profiles

Study 7.7–Q4 2013 Variances ³¹

- Added 6 new mini-AWS to off-ice localities in upper Susitna basin
- Added bi-level soil temperature sensors to all office mini-AWS stations
- Added 1-D Heat Transfer Module to WaSiM
 - Added freezing curve adjustment for variable soil saturation, among other changes
- Adding refined glacier volume change algorithm to Glacier Module in WaSiM
- Developing downscaled Regional Climate Model

Study 7.7–Q4 2013 Next Steps

- Continue runoff model calibration/validation
 - Collecting *in situ* measurements
 - Precipitation distribution
 - Glacier volume changes
- Continue runoff model module development
 - Soil heat transfer module
 - Glacier module
- Continued development of downscaled climate product