

IFS Technical Team Meeting -Riverine Modeling

Water Quality Modeling

November 13-15, 2013

Prepared by: Tetra Tech, Inc.

Prepared for: Alaska Energy Authority

11/13/2013

DRAFT - Subject to Revision

Water Quality Modeling

• Objectives

- Predict nutrient and mercury cycling in the reservoir
- Predict nutrient and mercury cycling in the downstream river for preexisting and post reservoir conditions
- Predict toxics fate and transport for organic contaminants and metals in the reservoir and riverine portion of the study area

• EFDC Modeling Framework

- Hydrodynamic model
- Temperature model
- Nutrient cycling model
- Solids and sorptive contaminant and/or metals transport and fate model
- Mercury cycling model

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Hydrodynamic Models

- Provide physical transport for temperature and dissolved and suspended water quality constituents including mercury and potentially toxic organic and inorganic materials
- Three-dimensional reservoir hydrodynamics
 - The only hydrodynamic model of the reservoir
 - Generalized vertical coordinate formulation
 - Historical and projected inflows
 - Outflows and consistent inflows from reservoir operations model

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

11/13/2013

Hydrodynamic Models

- Two-dimensional river hydrodynamics
 - One of five river hydrodynamic models including three 1-D models and two limited area 2-D modeling
 - The only 2-D model of the entire river
 - Dedicated river hydrodynamic model for water quality ensures consistent space and time scale resolution between hydrodynamics and water quality transport
 - Eliminates cumbersome model linkages
 - Addresses Focus Area modeling requirements by continuous transition to and from high resolution in these areas avoiding need for limited area modeling

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

11/13/2013

Hydrodynamic Model Data, Calibration, and Interaction with Other Models

- Reservoir hydrodynamic model
 - LiDAR based bathymetry (origin: MatSu LiDAR)
 - Historic USGS gauged inflows being used for model testing
 - Scenario inflow and outflow from Reservoir Operations Model
 - Reservoir model cannot be calibrated
- River hydrodynamic model
 - Existing and new cross sections supplemented by LiDAR based bathymetry
 - Bathymetry consistent with routing and geomorphic models
 - Historic USGS gauged flows being used for model testing
 - Scenario flows consistent with routing models
 - Calibrate to historic stage and discharge hydrographs

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

11/13/2013

Temperature Models

- Temperature is equally important as transport for water quality processes
 - Reactions have significant temperature dependence
- Reservoir temperature model
 - The only reservoir temperature model
 - Full thermal balance including ground coupling
 - Includes ice dynamics with a range of complexity levels
- *River temperature model*
 - One of two temperature models
 - Import ice cover information from Ice Routing Model or use observation based space and time varying ice cover

Temperature Model Data, Calibration, and Interaction with Other Model

- Atmospheric data for reservoir and river models
 - Project MET stations supplemented by NCDC reporting stations
- Reservoir temperature model
 - Inflowing temperature based pre-reservoir observational data
 - Reservoir model cannot be calibrated
- River temperature model
 - Inflowing temperature for existing conditions and tributaries based on observations
 - Inflow temperature for post-reservoir conditions from reservoir model
 - Ice cover from Ice Routing Model
 - Calibrate to subset of observational data

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

11/13/2013

Nutrient Cycling Models

- Consistent state variables between reservoir and river
- State Variables
 - DO, POC, DOC
 - NH3, NOX, PON, DON
 - PO4d, PO4p, POP, DOP
 - Optional labile and refractory organic class splits
 - Multiple algae species
- Optional sediment diagenesis model
 - Sediment oxygen demand and nutrient fluxes
- Ice related effects accounted for
 - Re-aeration
 - Light attenuation

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Solids and Sorptive Contaminant Transport and Fate Model

- Solids Transport
 - Multiple classes of cohesive and non-cohesive sediment
 - Multiple classes of organic solids from nutrient cycling model or externally specified
- Contaminant transport and fate
 - Arbitrary number of sorptive (organics and metals) contaminants
 - Three phase equilibrium partitioning including DOC complexated
- Reservoir sediment transport
 - Only model of reservoir sediment trapping
 - Light attenuation for water quality processes
- *River sediment transport not included in this study*
 - Information on solids concentrations for partitioning and light attenuation from geomorphic modeling
- Provides input to the Mercury model

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

11/13/2013

Mercury Cycling Model

- Uses EFDC contaminant transport and fate sub-model
- State variables
 - Water column dissolved elemental mercury
 - Water column and bed dissolved and particulate divalent mercury
 - Water column and bed dissolved and particulate methyl mercury
- Equilibrium partitioning
 - Particulate and dissolved organic carbon
 - Inorganic sediment solids
- *Reaction module includes spatial and temperature dependent*
 - Oxidation and reduction
 - Methylation and reductive and bacterial de-methylation
 - Volatilization
- Mercury study will provide information for model initialization, loadings, and parameterization

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

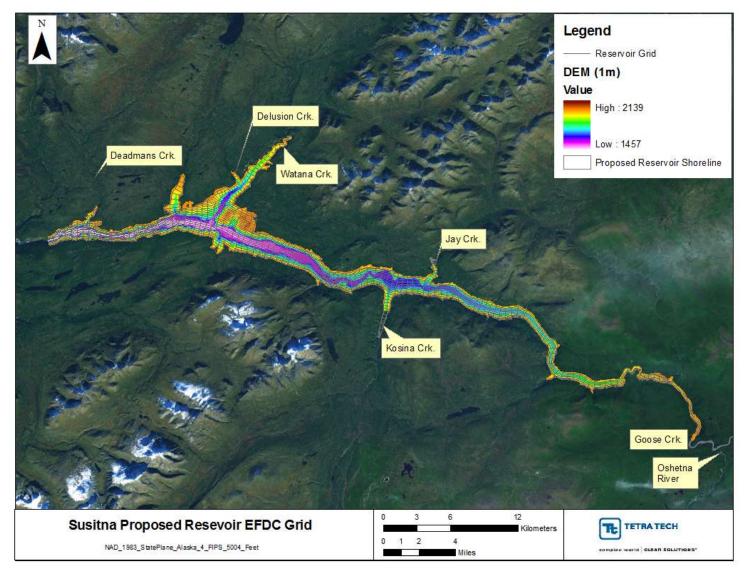
Nutrient, Toxics, and Mercury Model Data, ¹¹ Calibration, and Interaction with Other Model

- Initial conditions and most inflow concentrations/loads developed from observational data
- Potential loading from Groundwater Model upwelling
- Driven by EFDC hydrodynamic and temperature models with no other data dependencies
- Reservoir model cannot be calibrated, but will be evaluated for predicting reasonable bounding concentration ranges
- River model calibrated to sub-set of observational data

Model Spatial Resolution

- Spatial resolution of reservoir and river models optimized for unsteady-flow simulation and water quality constituent transport over multi-year time to decadal time scales
- Computational time step limited by CFL condition for advection which combines with spatial resolution to determine model run time performance
- *Reservoir must deal with pool elevation fluctuations*
- Multiple spatial resolution versions of the river model for preliminary and final calibration and longer and shorter term simulations
 - Coarse version for preliminary calibration
 - Medium version for final calibration
 - Locally fine version with nested Focus Areas
 - Approach allows resolution sensitivity to be determined

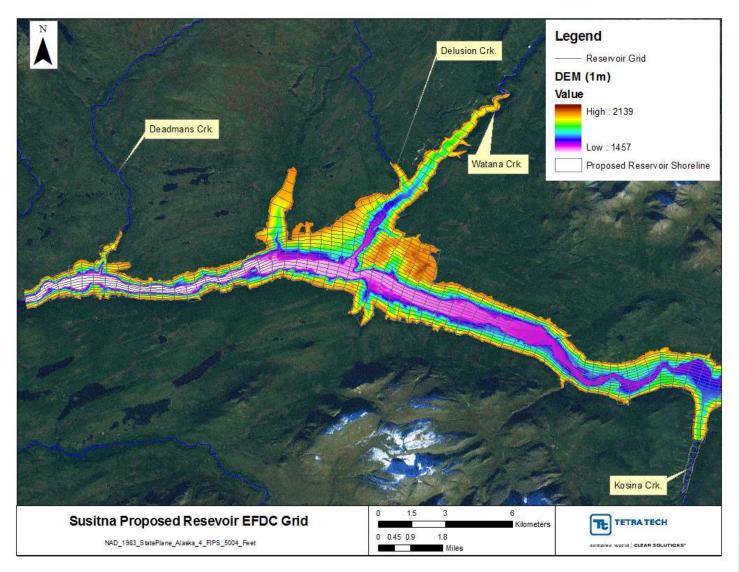
SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.


11/13/2013

Reservoir Model Domain, Spatial Resolution, 13 Performance, and Simulation Capability

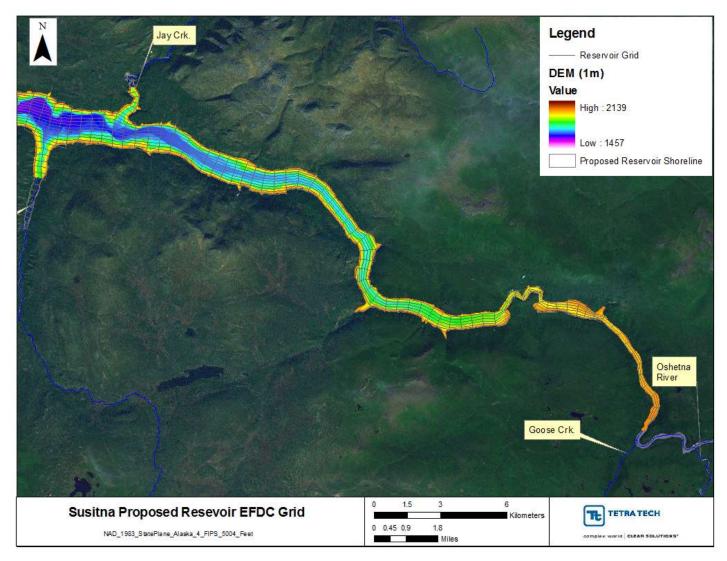
- *Reservoir model domain and resolution*
 - Reservoir domain well defined
 - 75 to 150 m lateral resolution
 - 400 to 800 m longitudinal resolution
 - On the order of 1400 horizontal grid cells
 - 2.5 to 25 m vertical resolution (subject to change)
 - 20 to 32 vertical layers in deepest region (subject to change)
- Estimated run time performance and simulation capability
 - 20 sec computational time step 1984 operational scenario
 - Dynamic stepping will increase performance
 - Performance should be at least 4 years simulated per cpu day
 - Multiple scenarios on multiple computers

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.


Reservoir Model Horizontal Grid

SUSITNA

11/13/2013


Reservoir Model Horizontal Grid

SUSITNA

11/13/2013

Reservoir Model Horizontal Grid

SUSITNA

Status of the Reservoir Model

- Spatial model configuration completed
- Simulated 1984 operational scenario to demonstrating models ability to represent 150 ft plus pool fluctuations and drying and wetting of shallow areas
- Preliminary temperature simulations underway
 - Investigate vertical resolution to represent summer thermal stratification
 - Evaluation of simple versus complex ice processes models
- In progress
 - Configuration of nutrient cycling and mercury models
 - Configuration of suspended solids transport for trapping simulation

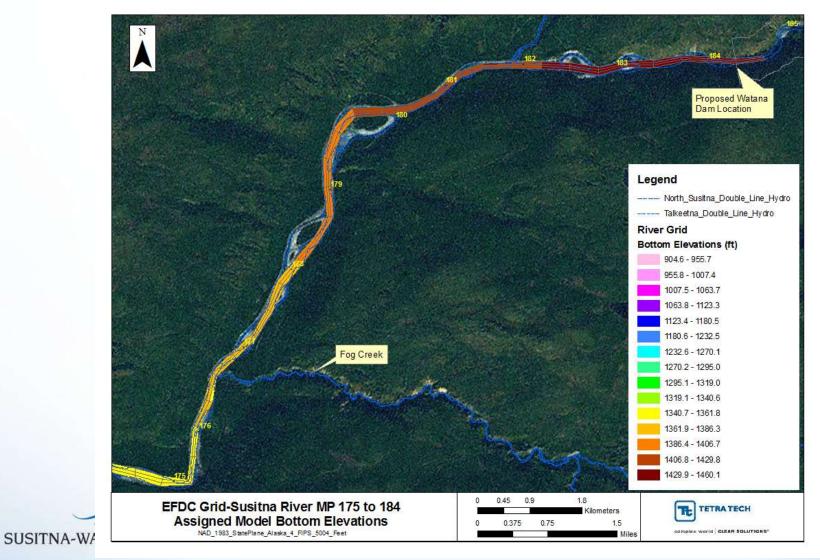
SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

River Model Domain, Spatial Resolution, 18 Performance and Simulation Duration

- River model domain and resolution
 - River domain consistent with routing and geomorphic modeling
 - Downstream boundary to be determined by study requirements
 - 3 to 7 cells laterally in bank in Middle River with transition to and from higher resolution in Focus Areas

River Model Domain, Spatial Resolution, Performance and Simulation Duration

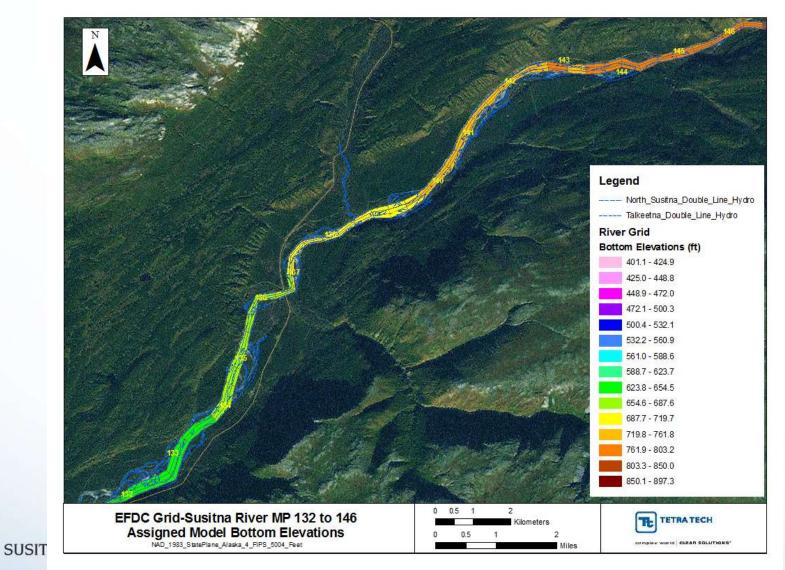
- River model domain and resolution
 - Lower River will not attempt to distinguish multiple numerous channels but will use EFDC wetting and drying capabilities
 - 250 to 1000 m longitudinal resolution with higher resolution in Focus Areas

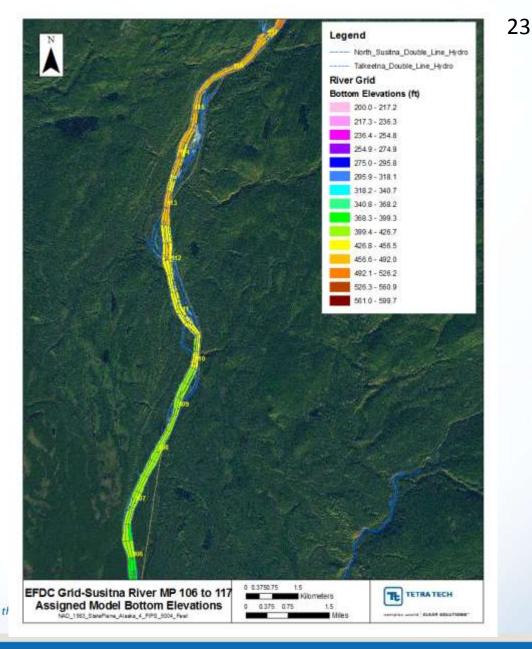

River Model Domain, Spatial Resolution, ²⁰ Performance and Simulation Duration

- Estimated run time performance and simulation capability on coarse grid covering PRM 55 to 187
 - 500 m longitudinal resolution with 3 cells across giving 1250 cells
 - 5 sec computational time step at 2000 cms
 - Much larger time steps using dynamic stepping at lower flow rates
 - Performance should be at least 8 years simulated per cpu day
 - Multiple scenarios on multiple computers

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

River Model Coarse Horizontal Grid


(secondary channels not shown)



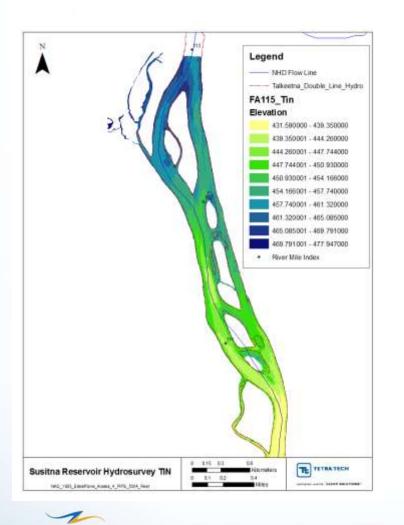
21

River Model Coarse Horizontal Grid

(secondary channels not shown)

River Model Coarse Horizontal Grid

(secondary channels not shown)


SUSITNA-WATANA HYDRO Clean, reliable energy for th

11/13/2013

DRAFT - Subject to Revision

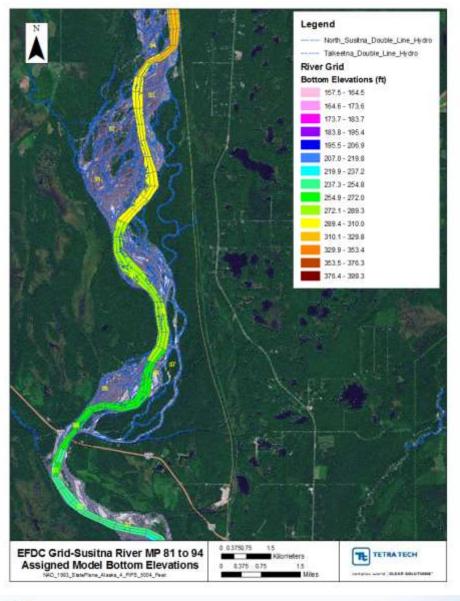
Focus Area Bathymetry Shown on Coarse Grid 24

(secondary channels not shown)

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

River Mile Index FA115_Tin Elevation 431.590000 - 439.350000 439.350001 - 444.260000 444 250001 - 447 744000 447.744001 - 458.930000 450 930001 - 454 166000 454 166001 - 457 740000 457 740001 - 461.320000 461 320001 - 465 085000 455 085001 + 459 791000 469 791001 - 477 947000 0 04 08 16 TE TETRATECH EFDC Grid-Susitna River MP 106 to 117 14 APPROX AND ADDRESS NRD 1983 BatePlane Alaska, 4, RPS 1004 Feat

Legend


River Grid

North Susitna Double Line Hydro

Talkeetna Double Line_Hydro

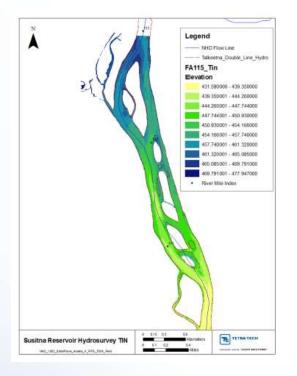
DRAFT - Subject to Revision

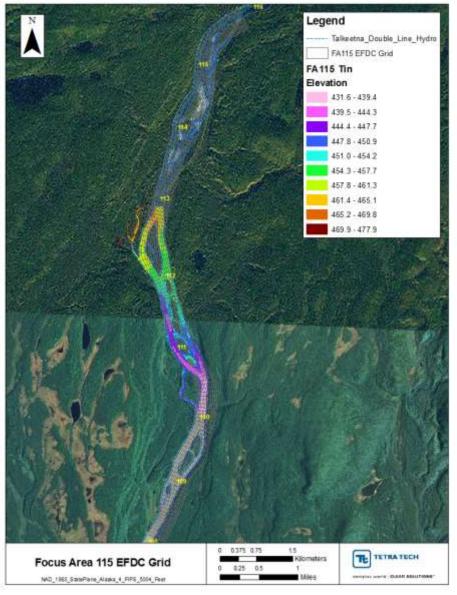
River Model Coarse Horizontal Grid (secondary channels not shown)

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

11/13/2013

DRAFT - Subject to Revision

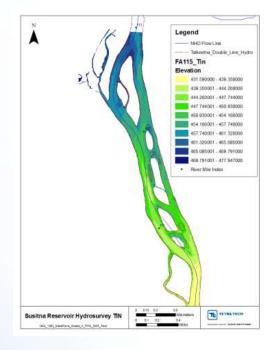

River Model Spatial Resolution Enhancement for Focus Areas

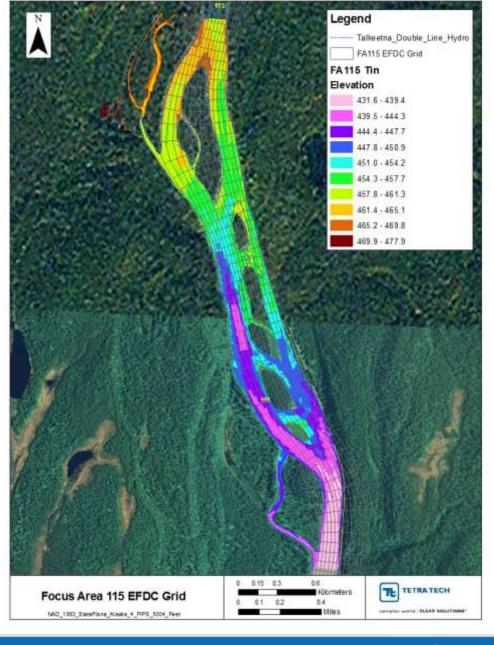

- River model domain and resolution
 - Coarse resolution: 500 m longitudinally, 3 cells across main channel
 - Medium resolution: 250 m longitudinally, 5 cells across main channel
 - Finer resolution for Focus Areas
- Example Focus Area grid on following slides
 - Approximately 100 m longitudinally and 30 m laterally
 - Final resolution will be based on sensitivity to water quality constituent gradients in focus areas

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

11/13/2013

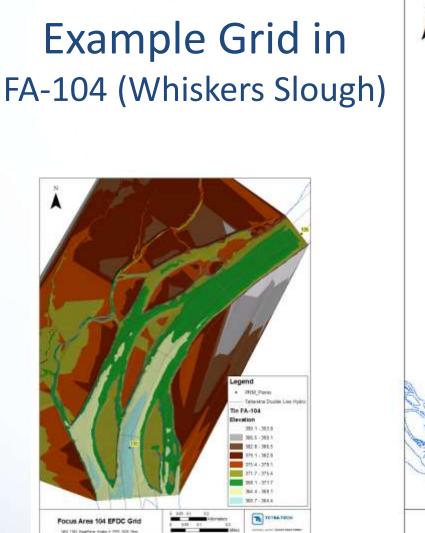
Example Grid in FA-115 (Slough 6A)

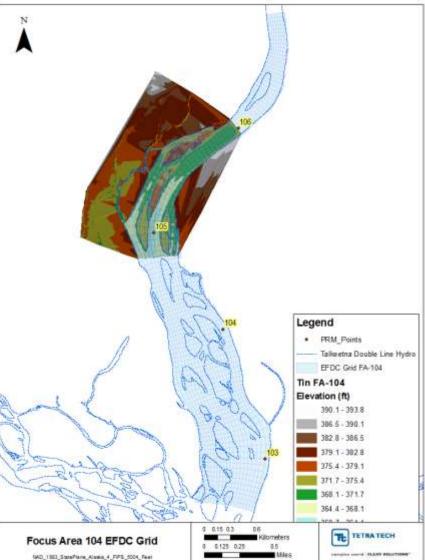



SUSITNA-WATANA HYDRO

Clean, reliable energy for the next 100 years.

Example Grid in FA-115 (Slough 6A)

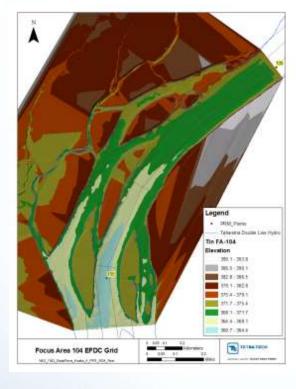

Clean, reliable energy for

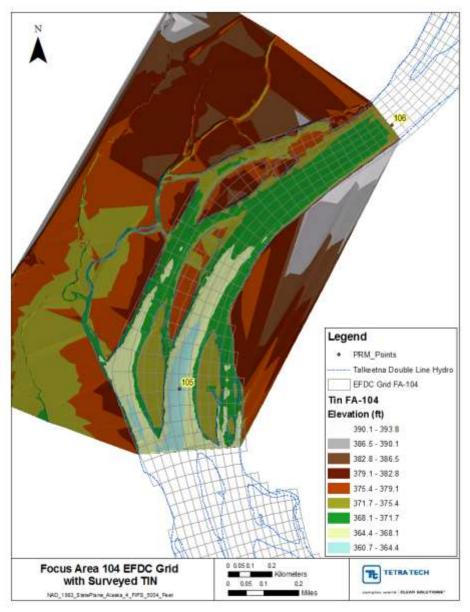


11/13/2013

SUSITNA-WATANA HYDRO

DRAFT - Subject to Revision




SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

11/13/2013

-

Example Grid in FA-104 (Whiskers Slough)

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

11/13/2013

Status of the River Model

- Base spatial model configuration completed
 From reservoir to below PRM 80
- Simulated 2012 observational/calibration period and 1984 operational
- Preliminary temperature simulations underway
 - Full year simulation using assumed ice-on and ice-off dates
 - Preliminary calibration to 2012 observations
- In progress
 - Refinement of base spatial configuration
 - Developing Focus Area grids for nesting into base configuration

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Hydrodynamic Model Data

	Reservoir	River
Shoreline	LiDAR derived elevation contours	LiDAR derived nominal river shoreline
	In use for model configuration	In use for model configuration
Elevation	LiDAR derived contours	Cross sections with possible LiDAR derived elevation extension
	In use for model configuration	2012 cross sections from routing model in use
Resistance	Roughness height from ground surface type including vegetation cover estimated from LiDAR data	Roughness based on bed composition and bed forms
	Data analysis is progress	Manning coefficient from routing model in use Need bed composition from geomorphic model
Historical Discharge	Gauged historical flow below reservoir	Historical flow at gauges along river and from tributaries
	USGS data in use Need data used for routing model Need data for ground water interaction	USGS data in use Need data used for routing models Need data for ground water interaction
Operational Discharge	Annual time scale outflow from various operational conditions	Annual time scale reservoir outflow for various operational conditions
	Need data from reservoir operation model and/or routing model	Need data from reservoir operation model and/or routing model

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

11/13/2013

-

Temperature and Ice Model Data

	Reservoir	River
Wind	Project meteorological stations supplemented by NCDC station data	Project meteorological stations supplemented by NCDC station data
	In use for model configuration	In use for model configuration
Atmospheric Conditions (Temp,	Project meteorological stations supplemented by NCDC station data	Project meteorological stations supplemented by NCDC station data
Pressure, etc)	In use for model configuration	In use for model configuration
Radiation	Project meteorological stations supplemented by estimated from atmospheric conditions	Project meteorological stations supplemented by estimated from atmospheric conditions
	Estimates use theoretical corrected for estimated cloud cover. Presently working with NCDC data	Estimates use theoretical corrected for estimated cloud cover. Presently working with NCDC data
lce Cover Fraction and Thickness	Model predicted Uses wind, atmospheric conditions, and radiation	Provided by river Ice modeling
Thermal Loads	River and tributary flows and in-stream temperature observations	River and tributary flows and in-stream temperature observations
	Presently working with USGS flows and observed in- stream temperature data	Need to coordinate with ice routing model for consistent thermal loads

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

11/13/2013

Nutrient Cycling Model Data

	Reservoir	River
State Variables	Selection in progress	Selection in progress
	Based on water quality observational study	Based on water quality observational study
External	Historical river flow at reservoir site and upper and	Historical and operational river flow at reservoir site,
Loads	middle river water quality observations	tributary flows and estimated un-gauged inflow corresponding water quality observations and reservoir model output
	Observational data analysis in progress	Observational data analysis in progress
Internal Loads	Primary production and decaying organic matter in flooded reservoir	Primary production
	Estimates of flooded organic matter is progress	See parameterization
Initial Conditions	Flooded organic matter distribution and seeding concentrations	River not sensitive
	See internal loads	From observational data
Parameters	Based on high latitude lake and reservoir literature	Based on high latitude river literature data and
	data and inferred form observational data	inferred form observational data
	Literature review and data analysis in progress	Literature review and data analysis in progress

Solids Transport Model Data

	Reservoir	River
State Variables	Multiple size classes of inorganic sediment and particulate organic matter	Multiple size classes of inorganic sediment and particulate organic matter
	Inorganic based on information from Geomorphic modeling for consistency. Organic consistent with nutrient cycling model	Inorganic based on information from Geomorphic modeling for consistency. Organic consistent with nutrient cycling model
External Loads	Upstream inorganic sediment load from geomorphic study. Organic load estimated by downstream observations	Upstream inorganic sediment load from geomorphic study and reservoir model. Organic load estimated by downstream observations and reservoir model
	Need additional information	Need additional information
Internal Loads	Internal organic solids loads from nutrient cycling model	Internal organic solids loads from nutrient cycling model
Initial Conditions	Bed initial conditions important for inorganic and organic solids	Bed initial conditions important for inorganic solids
	Inorganic from geomorphic study	Inorganic from geomorphic study
Parameters	Settling, deposition and re-suspension	Settling, deposition and re-suspension
	Inorganic from and/or consistent with geomorphic study	Inorganic from and/or consistent with geomorphic study

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Mercury Cycling and Contaminant 36 Model Data

	Reservoir	River
State Variables	Elemental, divalent, and methyl	Elemental, divalent, and methyl
	Water column and bed	Water column and bed
External	River flow at reservoir site and mercury study	River flow at reservoir site and tributaries and
Loads	observational data	mercury study observational data. Reservoir model mercury outflow
	Observational data to be analyzed	Observational data to be analyzed
Internal Loads	Based on soil levels within reservoir foot print	Significance to be determined
	Observational data to be analyzed	
Initial Conditions	Water column not sensitive. Bed consistent with internal loads	Water column not sensitive.
	Mercury study data to provide	Significance of bed to be determined
Parameters	Mercury reaction parameters from literature for high latitude lakes and reservoirs and from study	River and tributary flows and in-stream temperature observations
	Review in progress	Review in progress

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

11/13/2013

-