

Technical WorkGroup Meeting Q3 2013 TWG

RSP 8.5 Fish and Aquatics Instream Flow Study (FA-IFS)

September 24, 2013

Prepared by R2 Resource Consultants

RSP 8.5 FA-IFS: Presentation Overview

- Review of Schedule and Q3 Activities and Planned Q4 Activities
- Focus Area Data Collection
- Hydrology and Hydraulic Flow Routing
- HSC/HSI Data Collection
- IFS Winter Studies
- Inter-disciplinary Study Integration and Modeling
- Other Topics

Review of Schedule: Fish and Aquatics Instream Flow Study 3

Activity 2012		2012 2013						2014				2015		
Activity	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q 4	4Q 1	lQ	2Q
Study Area Selection (Focus and Supplemental Areas)		-							_	_		_		
Compile aquatic habitat (RSP Sec 9.09) and geomorphology (Sec 6.5) characterization study results			_											
Identify proposed Focus Areas			_	_										
Refine Focus Areas and identify supplementary area if needed for any underrepresented habitats					_	-				•••				
TWG confirmation of 2013 areas					-	-								
Review available data and modify or add Focus Areas and supplementary sampling areas							-	_	Δ					
TWG review of proposed area weighting factors to extrapolate modeled to non-modeled areas						-	-							
TWG meeting on area weighting					-	-						,		
Planned Activity Δ Initial Study Report														

.........

▲ Updated Study Report

Follow-up Activity

Activity		2012			2013			2014			2015		
Activity	1Q 2	2Q 30	4Q	1Q	2Q	3Q 4	4Q 1	Q 20	3Q	4Q	1Q	2Q	
Review of 1980s Data and Information		-					- 2	<u> </u>		-			
Model Selection by habitat type (2-D, 1-D, etc.)			-		-								
Propose habitat models for Focus Areas and supplemental area			_	-									
TWG review and meeting on habitat model selection				_	-		4	∆					

Planned Activity
 Follow-up Activity

- ▲ Initial Study Report
- ▲ Updated Study Report

4

Activity	2012		2012			2012			2012			2013			2014		
Activity	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q 3	Q 4Q	1Q 2C					
Hydraulic Routing		-	_		-					-	_						
Review 2012 transect data RM 184 to 75		_		-													
Develop executable mainstem ice-free flow routing model				—													
Model verification using stage recorder data				_				•••••									
Identify need for additional data				_		_			Δ								
Distribute draft Mainstem Ice-free Flow Routing Model to TWG for review																	
Collect additional channel and hydraulic data as needed																	
Use draft model to support IFS, fisheries, water quality, and geomorphology 2013-14 study efforts										-							
Refine ice-free routing model using 2013 and 2014 data									•	-	_						
Distribute final Mainstem Ice-free Routing Model to TWG for review											_						
Use final Mainstem Ice-free Routing Model for scenario evaluations — Pla	nne	d A	Ctivi	ity vity				△	Initi Upo	ial St dateo	udy l d Stu	Report dy Rep					

Activity		2012				20	13			2015			
Activity	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q 2	2Q 3	Q 40	1Q	2Q
Hydrology		-	_							_			
Obtain existing daily flow records from USGS		-		_									
Obtain analysis of climate change effects on flow from USGS			_										
Obtain basin area calculations from GINA-UAF													
Calculate estimated tributary accretion flows				-		_							
TWG review of hydrologic record of daily flow													
TWG review of representative years for modeling									Δ				
Collect 15-min stage records from mainstem, tribs, Focus Areas		_									-		
Develop hourly flow record: Focus Areas/other mainstem loc.							_		_				
Develop hourly inflow for select tributaries							-		_				
Develop list of potential/recommended IHA-type parameters									-				
TWG review of selected IHA-type parameters													
Examine 2014 stage data and refine hydrologic record to support scenario evaluations													
TWG meeting to review complete hydrologic record											_		
Use hydrologic record for scenario evaluations												_	

Activity		2012 <mark>2013</mark> 20					20	14		2015				
Activity	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q 4	1Q [1Q	2Q
Periodicity		-							_	_		_		
Review draft species and lifestage periodicity data developed under Fish Distribution and Abundance (Sec 9.06)														
Identify specific HSC/HSI periodicity data needs				_								u		
Distribute HSC/HSI periodicity to TWG				_				••••	Δ			••••		
TWG meeting on HSC/HSI periodicity used to model scenarios											-	_		

Planned Activity
 Follow-up Activity

△ Initial Study Report

▲ Updated Study Report

Activity		2012				2013				2014				2015		
Activity	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q	1Q	2Q	3Q	4Q (1Q [2Q		
HSC/HSI Fish: Field Data Collection (summer, fall, winter)		-											-			
Use 1980s Susitna data and other existing HSC curves to develop draft species / lifestage HSC curves for the lower and middle Susitna River			_			_										
Propose target HSC species, lifestages, substrate and cover				_	-											
TWG meeting on HSC/HSI targets and data collection study details					_	_										
Conduct HSC/HSI summer surveys (snorkel, seining, electrofishing)		-	_			-		-		-	_					
Conduct fish HSC/HSI winter surveys (underwater camera, electrofishing)					_			-		•						
Conduct aquatic biota stranding and trapping surveys						-	_									
Coordinate and review adult/spawning HSC data collected by Fish and Aquatic biotelemetry (Sec 9.06)			_	_												
Distribute preliminary findings of wintertime surveys to TWG						-	-				-		-			
Distribute preliminary results of HSC/HSI surveys and changes to draft HSC/HSI					_				··⁄							
TWG meeting on species and life stage HSC/HSI					-	-			•••							

Activity 201		20	012		2013			2013 2014				2015	
		3Q	4Q	1Q	2Q	3Q	4Q	1Q 2	Q 30	2 4Q	1Q	2Q	
Collect Physical and Hydraulic Data for Habitat Modeling						-					-		
Collect data for digital terrain model						-		_			•		
Collect x-section and stage:discharge data at Focus Areas and supplemental areas						-		_					
Collect substrate/cover data at Focus Areas and supplemental areas							_	_					
Provide summaries of data collection efforts									Δ				

.........

Planned Activity Follow-up Activity

Initial Study Report Δ

Updated Study Report

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Focus Area Data Collection Update

Focus Area Sampling

	Focus Area	Initial Sampling Year
•	FA-184: Watana Dam	2013/2014 *
•	FA-173: Stephan Lake	2013/2014 *
•	FA-151: Portage Creek	2013/2014 *
•	FA-144: Side Channel 21	2013
•	FA-141: Indian River	2013
•	FA-138: Gold Creek	2013
•	FA-128: Skull Creek Complex	2013
•	FA-115: Lane Creek	2013
•	FA-113: Oxbow I	2013
•	FA-104: Whiskers Slough	2013

* Contingent on Permitting and Access Authorization

Focus Area Sampling

	Focus Area	Sampling Year	
•	FA-184: Watana Dam	2014 *	
•	FA-173: Stephan Lake	2014 *	
•	FA-151: Portage Creek	2014 *	
•	FA-144: Side Channel 21	2013	
•	FA-141: Indian River	2013	
•	FA-138: Gold Creek	2013 Bat	hymetric
•	FA-128: Skull Creek Complex	2013 Sur	veys nnleted
•	FA-115: Lane Creek	2013	inpicted
•	FA-113: Oxbow I	2013	
•	FA-104: Whiskers Slough	2013	

* Contingent on Permitting and Access Authorization

FA-IFS: Focus Area Data Collection

- Bathymetric Surveys completed for seven FAs
 - Work progressed from FA-144 downstream
 - Some refinements to be made during September effort (finish ≈ 9/26): reduce bathy survey intervals from 10 sec to 2 sec intervals
- ADCP Calibration measurements completed at all FAs; second set during September
- Majority of ADCP flow transects in Middle and Lower River complete
 - Cross-check with USGS measurement on one transect nearly identical.
- Substrate characterization of seven FAs
- Data QA/QC ongoing
- Preliminary data input for modeling completed for FA-104 and FA-128: Bathymetric and RTK data point maps; Triangulated irregular network (TIN) maps; Topographic maps (see examples)

Bathy and RTK Data Points – FA-104

Triangulated Irregular Network – FA-104

Topography – FA-104

Legend 5' Majbr Contours 1' Micor Contours Focus Area Boundary

PRELIMINARY DRAFT – SUBJECT TO REVISION

Focus Area 104 Topography-Below OHW Draft Geovera, LLC 09/05/2013

Bathy and RTK Data Points – FA-128

Triangulated Irregular Network – FA-128

Topography – FA-128

FA-IFS: Focus Area Data Collection

- Habitat Characterization and Mapping per RSP 9.9
 - Macro-habitats (side channel, side slough, upland slough, etc.; field verification of aerial line mapping)
 - Meso-habitats (riffle, pool, etc.)
 - Training and habitat surveys initiated August 2.
 - 88% of FA habitats surveyed in August within MR 2, 5, 6, 7, 8 (FA-144 downstream)
 - 49% of accessible, randomly-selected mainstem habitat units surveyed in August, including all primary MR and UR units.
 - 8 of 38 accessible UR tributary geomorphic reaches have been surveyed.
 - Macro-habitat data analysis (ongoing)
 - Review/refine definitions
 - Compare aerial based line mapping with field surveys
 - Final review of Macro-habitat designations/definitions with IFS-TT (early October?)

RSP 8.5 FA-IFS: Variances

 Postponed surveys of three FAs until 2014 (access related)

8.5.4.3 Flow Routing Model and 8.5.4.4 Hydrology Update

RSP 8.5 FA-IFS: Hydrology

8.5.4.3 FA-IFS - Open Water Flow Routing Model U.S. Army Corps of Engineers Hydrologic Engineering Center River Analysis System HEC-RAS Version 4.1

24

Hydraulic Flow Routing Model: Model Inputs

- River cross-sections
 - 2012 88 cross-sections surveyed from PRM 80.0 to 153.7 and from PRM 168.1 to PRM 187.2 (dam site)
 - 2013 add 99 cross-sections from PRM 29.9 to 146.1
 - 2014 add 25 cross-sections from PRM 146.6 to 153.3 and from 166.6 to 186.7

No cross-sections surveyed between PRM 153.7 and 166.6 for reasons of safety (Devils Canyon)

Final total = 212 cross-sections

Average distance between cross-sections = 0.7 miles

Cross-sections extended into the floodplain using LiDAR

Cross-Sections Surveyed in 2012

Steady State Calibration Data

- Water Surface Elevation/Flow
 - 2012 120 measurements
 - 2013 299 measurements (Ongoing)
 - 2014 67 measurements (Proposed)

Final total = 486 measurements

Calibration accomplished by selection of hydraulic roughness, expansion/contraction loss coefficients, and interpolated cross-sections

Unsteady State Calibration/Validation Data

River	Station	2012	2013	2014
	Above Tsusena Creek USGS 15291700	\checkmark	\checkmark	\checkmark
Sucitor	At Gold Creek USGS 15292000	\checkmark	\checkmark	\checkmark
Susima	At Sunshine USGS 15292780	\checkmark	\checkmark	\checkmark
	At Susitna Station USGS 15294350		\checkmark	\checkmark
Chulitna	Near Talkeetna USGS 15292400	\checkmark	\checkmark	\checkmark
Talkeetna	Near Talkeetna USGS 15292700	\checkmark	\checkmark	\checkmark
Yentna	Near Susitna Station USGS 15294345		\checkmark	\checkmark

1 SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Flow Routing Model Development Schedule

- Version 1 January 2013
 - From PRM 80.0 to PRM 187.2
 - Hourly downstream accretion flows without diurnal fluctuations
 - Cross-sections do not extend into floodplain
- Version 2 January 2014
 - From PRM 29.9 to PRM 187.2
 - Hourly downstream accretion flows with partial diurnal fluctuation coverage based on available historical hourly flows
 - Cross-sections do not extend into floodplain
- Version 3 January 2015
 - From PRM 29.9 to PRM 187.2
 - Hourly downstream accretion flows with complete coverage of diurnal fluctuations
 - Cross-sections extended into floodplain

8.5.4.4 FA-IFS: Hydrology – 2013 Tributary Gaging

		River
Tributary	Susitna PRM	Segment
Oshetna River	235.1	Upper
Kosina Creek	209.1	Upper
Unnamed Creek	144.6	Middle
Indian River	142.1	Middle
Skull Creek	128.1	Middle
Gash Creek	115.0	Middle
Slash Creek	114.9	Middle
Unnamed Creek	113.7	Middle
Whiskers Creek	105.1	Middle
Trapper Creek	95.4	Lower
Birch Creek	93.3	Lower
Deshka River	44.9	Lower

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

- Installation of Continuous Pressure Transducers (& Duplicates) at 10 Sites (15 min. increments)
 - Oshetna River, Kosina Creek, Indian River, Skull Creek, Gash Creek, Unnamed Tributary @ PRM 113.7, Whiskers Creek, Trapper Creek, Birch Creek, Deshka River
- Spot Measurements at Two Sites
 - Unnamed Tributary @ PRM 144.6, Slash Creek
- Installation of barometric pressure transducers (for atmospheric adjustment) at four sites
 - Kosina Creek, Indian River, Whiskers Creek, Deshka River

- 2 Gage Installation Field Visits
 - June 15-17th, 22nd (Gash, Trapper, Unnamed Trib @ 113.7, & Whiskers)
 - July 11-15th (Birch, Deshka, Indian, Kosina, Oshetna, & Skull)
- Data download & streamflow measurment at all sites
 - Aug 6-10th

- Continuous Site Data Collection
 - Streamflow measurement
 - Staff Gage reading
 - Benchmark and Water Surface Elevation
 Survey
 - Datalogger download
 - Site photographs
 - Spot Measurement Site Data Collection
 - Streamflow measurement
 - Site photographs

- Two Sites (Unnamed Tributary at PRM 144.6 and Slash Creek) were too low to install continuous monitors so only discharge spot measurements were collected during site visits.
- Four barometric pressure transducers installed.

- One more field visit in the end of September/beginning of October
- Data Analysis
 - Where possible, develop rating curves for each of the continuous sites to develop a 15-minute record of streamflow
 - Ability to develop rating curve and continuous record depends on the range of streamflows measured and the range of pressure recorded

FA-IFS – Tributary Gaging: Next Steps 2014

- Continue spot measurements and continuous monitoring at the same sites and add five additional tributary gaging sites
 - Fog Creek, Unnamed Tributary @ 173.8,
 Portage Creek, Sheep Creek, and Caswell
 Creek
- Conduct four field visits (once per month June through September)

8.5.4.5.1.3 FA-IFS: Biological Cues Evaluation 38

- Identify and evaluate candidate drainages with "suitable data" sets (hydrology and adult escapement/count data):
 - Deshka River lacking hydrologic record
 - Taku River
 - Stikine River
- Identify appropriate biological metrics
 - Species
 - Life stage sensitive periodicity
- Identify appropriate hydrologic metrics (potential correlates)
 - IHA and others
- Statistical Analysis

FA-IFS Study – Biological Cues Evaluation 39

Dependent Variable	Potential Driving/Correlating Factors			
Brood Year Escapement or Returns per Spawner	Mean flow during Incubation Peak flow during Incubation Mean flow during spawning Low flow during spawning Mean winter air temperature during Incubation (Brood Year + 1) Mean winter air temperature during fry overwintering (Brood Year +2) Winter low flow during Incubation (Brood Year +1) Winter low flow during fry overwintering (Brood Year +2) Mean Winter flow during Incubation (Brood Year +1) Mean Winter flow during fry overwintering (Brood Year +2) Mean Winter flow during fry overwintering (Brood Year +2) Mean Summer PDO index (Brood Year +2)			
Median Julian day of upstream migration	Julian Day of peak flow during July through August			
Number of days between 5% and 95% cumulative upstream migration	Annual Escapement Mean Flow during upstream migration Julian Day of peak flow during July through August Variance of mean daily flow during upstream migration			
Median Julian day of downstream migration	Julian day of initial ice break-up Julian Day of peak flow during mid-May to August			

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

8.5.4.5 HSC/HSI Data Collection

FA-IFS: Habitat Suitability Criteria Development

- Q3 2013 HSC/HSI Data Collection Task Summary
- HSC/HSI Data Collection Update
 - Number of Sites, field visits, data collected
- Variances from 2013 Study Plan
- Q4 2013 Proposed Work

FA-IFS: HSC Studies

- Conduct summer 2013 HSC surveys: <u>In Progress</u> crew training and initial surveys started June 18, 2013
- Conduct opportunistic stranding and trapping surveys: <u>In Progress</u>
 crew training and initial surveys started June 18, 2013

FA-IFS: HSC Data Collection

- Q3 2013 HSC/HSI Data Collection Task Summary
 - Collect microhabitat use and availability data across a broad range of habitat conditions for development of site-specific HSC preference curves
 - Collect and evaluate relationship between other variables (water quality & chemistry, groundwater upwelling) and fish presence where possible

FA-IFS: HSI Sampling Update

- Surveyed 134 Sampling Reaches:
 - > 110 50m (off-channel areas)
 - 24 100m (mainstem areas)
- HSI data collected in each of the 134 Reaches:

- Minimum of three measurements of each parameter
- Temperature, D.O., conductivity, and VHG
- Turbidity 1-3 samples depending on variability
- VHG values range from +200 mm to -95 mm
 - Main and side channel generally loosing reaches
 - Off-channel/sloughs generally gaining reaches

Microhabitat Data in Unoccup 45 <u>Cells</u>

- Collected at set intervals along 100m or 50m length
- Depth, Vel., Substrate, & cover
- Water quality (temp., D.O., conductivity, turbidity)
- Measurement of groundwater upwelling

Detecting Groundwater Upwelling 46

FA-IFS: HSC Data Collection Summary

- Collect microhabitat data for both occupied (utilization) and unoccupied (availability) areas:
 - ✓ Measurements collected at all FA sites d/s Portage Creek, expanded to areas outside FA
 - ✓ Sites selected based on stratified random sampling
 - ✓ Sampling events : July 8-17, July 22-31, August 5-14, August 19-28, September 9-18, and September 23-October 2
 - ✓ 50m and 100m sampling reaches (agency recommended)
 - ✓ Snorkel, seining, electrofishing, and pedestrian surveys
 - Collected depth, velocity, substrate, cover and water quality data (temp., D.O., conductivity, turbidity, groundwater upwelling)

2013 HSC Sampling Update

- Emphasis on Middle River Segment (downstream of Portage Creek)
- Concentrated effort on 7 Focus Areas with known fish use and high diversity of macrohabitat types
- Surveyed 134 Sampling Reaches:
 - 110 50m (off-channel areas)
 - 24 100m (mainstem areas)
- Sample length = 7,900m (25,900 ft)
- Number of utilization measurements = 828
- Number of availability measurements = 2,370

FA-IFS: HSC Sampling Update

52

FA-IFS: HSC Sampling Update

FA-IFS: HSC Study – Variances

- No HSC sampling in Lower River Segment
 - Concentrated efforts within Middle River Segment
 - Limited macrohabitat mapping for stratified, random sampling approach
 - Proposed for 2014
- No HSC sampling in three upstream most FAs (151, 173, 184)
 - Access/permitting issues
 - Proposed for 2014
- Limited Stranding and Trapping Surveys
 - Opportunistic sampling based on specific flow events
 - Lower priority for 2013 sampling
 - Lower priority for 2014 sampling

FA-IFS: HSC Study – Next Steps

• Q4 2013 Activities:

- 1. Complete data entry for September data collection efforts
- 2. Perform final QC checks on all 2013 data
- 3. Sort and analyze data based on geomorphic reach, FA, macrohabitat type, fish species and life stage
- 4. Refine process for development of Univariate and/or Multivariate HSC curve
- 5. Review HSC data for patterns in microhabitat use based on water quality (temp., D.O., conductivity, turbidity) and groundwater upwelling
- 6. Review field data from Early Life History and Fish Distribution and Abundance studies for refinement of species and life stage periodicity
- 7. Identify data gaps for recommended 2014 activities
- 8. Produce Initial Study Report
- 9. Conduct IFS-TT meeting (early December) to review 2013 data and evaluation of curve development procedures

RSP 8.5 IFS

Winter Studies Update

FA-IFS: Winter Studies – Q3 2013 Update 57

- 2012-2013 Analysis and Results: In Progress
 - Updates at March, June and Sept 2013 TWG meetings
 - To be completed during Q4 2013
- 2013-2014 Study Plan Development: <u>In Progress</u>
 - Collaboration: IFS, Fish, Groundwater, Ice Processes, Hydrology, Geomorphology, Water Quality
 - To be completed during Q4 2013

FA-IFS: Winter Studies – Results

59 FA-IFS: Winter Studies Results – Temperature

FA-IFS: Winter Studies Results – Temperature 60

FA-IFS: Winter Studies Results – Water Level 61

FA-IFS: Winter Studies HSC Data-2012-2013⁶²

		Fish Life		Number of
Focus Area	Species	Stage	Habitat Type	Observations
Whiskers Slough	Chinook	Fry	Upland Slough	1
		Juvenile	Upland Slough	12
		Juvenile	Side Channel	1
	Coho	Fry	Upland Slough	3
Skull Creek Complex	Chinook	Fry	Side Slough	2
		Juvenile	Upland Slough	9
			Side Slough	1
	29			

FA-IFS: Winter Studies – Variances

No variances for IFS Winter Studies

FA-IFS: Winter Studies – Next Steps⁶⁴

- 2013-2014 Study Plan
 - Three Primary FAs: FA-104, FA-128, FA-138
 - Sampling at additional sites based on fish distribution, weather, access
 - Four trips: January, February, March and April 2014
 - HSI: Water quality and water level instruments installed Sept 2013 and monitored thru Winter 2014
 - HSC: Record fish habitat use and behavior via capture and underwater observation methods

Study Plan – 2013-2014 Sites

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

RSP 8.5 FA-IFS: Lower River Studies Update

FA- IFS: Lower River Fish Habitat Study – Q3 2013 Update

67

- Field Tasks
 - Moderate flow (~ 45,000 cfs at Sunshine) water surface elevations at fish habitat transects sites – COMPLETED August 18-20
 - Collect low flow WSE at PRM 93 to PRM 97 fish habitat transects (Scheduled Sep 23-25)
 - Complete substrate and cover mapping at PRM 93 to PRM 97 fish habitat transects – (Scheduled Sep 23-25)
 - Collect transect profile and water surface elevation data at Deshka River confluence in coordination with geomorphology (Scheduled mid-September)
- Data and Modeling Tasks
 - Received QC2 field data from Geovera and Brailey for June survey
 - Initiated data processing and QC3 process

RSP 8.5 FA-IFS: Lower River Fish Habitat Study –₇₂ Variances

• No variances to the study plan during Q3.

Lower River Fish Habitat IFS Study – Next Steps

- No field tasks are scheduled for Q4 2013
- Data and Modeling Tasks for Q4 2013
 - Complete QC3 of all field data
 - Model setup and calibration
 - HEC-RAS (water level) and PHABSIM (velocity and habitat) modeling proposed
 - Version 1 model runs to support ISR
 - Some data needed for final model runs will not be available until Q1 2014
- ISR Tasks
 - Include details on model calibration and draft results for wetted area and WUA versus flow relationships at PRM 93 to PRM 97
 - 👝 sites

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

8.5.4.8 FA-IFS Study Integration and Modeling Update

FA-IFS: Study Integration and Modeling 75

Focus Area Study Integration

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

FA-IFS: Riverine Modeling and Study Integration

- Internal Model Integration Ongoing
 - Modeling Meeting August 30 (completed)
 - Modeling Meeting October 10
- IFS-TT Riverine Model and Study Integration Meeting – November 14-15th
 - <u>Confirm Agenda</u>