2012 Technical Memorandum: *Reconnaissance Level Assessment of Potential Channel Change: Lower Susitna River Segment*

> Technical Workgroup Meeting March 28, 2013

Prepared by: Tetra Tech Prepared for: Alaska Energy Authority

2012 Study Technical Memorandum: Reconnaissance Level Assessment of Potential Channel Change: Lower Susitna River Segment

- Part of 2012 Study G-S4: Reconnaissance-Level geomorphic and Aquatic Habitat Assessment of Project Effects on Lower River Channel
- Date Filed with FERC: 3/1/2013
- Date Posted to AEA website: 3/1/2013

Purpose and Objectives

- Integrate results of the preliminary Geomorphic Assessment, Sediment Balance, and Flow Assessment investigations.
- Perform an initial assessment of potential Project-related changes in channel morphology of the Lower River.
- Determine whether the Fluvial Geomorphology Modeling Study and other studies need to be extended downstream in the Lower River.

Background

- Grant et al. (2003) conceptual model for channel change below dams
 - Sediment supply ratio
 - Time ratio of bed-mobilizing flows
- Sediment transport supply and capacity
 - Initial Sediment Balance for the Middle and Lower Susitna River (Tetra Tech)
- Mobilizing flows based on USGS measurements and gage data

Background (Cont.)

- Flow duration curves from USGS extended record
 - Stream Flow Assessment (Tetra Tech)
- Both Pre-Project and Maximum Load Following OS-1 conditions analyzed

Sediment Transport Quantity and Duration

- $S^* = \frac{S_B}{S_A}$ Sediment supply below to above Dam
- $T = \frac{\sum t_{(Q>Qcr)}}{\sum t_Q}$ Proportion of time Q > Q_{cr} (Q_{cr} = bed-mobilizing flow) • $T^* = \frac{T_{post}}{T_{pre}}$

Grant et al. (2003) Downstream Effects ⁸

S* for Gravel Sizes Downstream of Dam⁹

S* for Sand Sizes Downstream of Dam ¹⁰

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Annual Flow Duration – Q_{cr} Exceedance 13 Gold Creek

Annual Flow Duration – Q_{cr} Exceedance Sunshine

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Annual Flow Duration – Q_{cr} Exceedance Susitna Station

15

T* (Q_{cr} Exceedance) Summary

Location	Estimated Q _{cr} (cfs)	T _{pre}	TMax LF OS-1	T*
Best Estimate				
Watana	25,000	11.0%	1.8%	0.16
Gold Creek	25,000	11.0%	1.8%	0.16
Sunshine	16,000	44.0%	50.0%	1.14
Susitna Station	4,000	100.0%	100.0%	1.00
Low Estimate				
Watana	20,000	20.0%	4.5%	0.23
Gold Creek	20,000	20.0%	4.5%	0.23
Sunshine	11,000	46.0%	70.0%	1.52
Susitna Station	2,000	100.0%	100.0%	1.00
High Estimate				
Watana	30,000	5.0%	0.7%	0.14
Gold Creek	30,000	5.0%	0.7%	0.14
Sunshine	21,000	38.0%	38.0%	1.00
Susitna Station	6,000	92.5%	99.2%	1.07

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

T* for Downstream of Dam

S* - T* for Downstream of Dam

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

CONCLUSIONS

- Sand transport less effected than gravel
- Middle Susitna River
 - Reduced sediment supply and frequency of mobilizing flows.
 - Tributary gravel supply may exceed transport capacity for Maximum Load Following OS-1 conditions.
- Lower Susitna River (LR 1)
 - Continued accumulation of gravel and sand

CONCLUSIONS

- Impacts downstream from Three Rivers Confluence could occur
 - <u>Sunshine Yentna</u>: ~25% reduction in 1.5- to 5-year peak flows
 >10% reduction in channel width (Flow Assessment)
 - Below Yentna: ~15% reduction in 1.5- to 5-year peak flows
 < 10% reduction in channel width (Flow Assessment)</p>
 - Lower River will remain aggradational but less so under Max Load Following OS-1 (Sediment Assessment and Channel Change)
 - Grant, et al (2003) Framework
 - Lower River below Sunshine could tend toward degradation and narrowing under Max Load Following OS-1 (Channel Change)

The Analysis is an Initial Assessment

- Performed to assess potential change in Lower Susitna River
- Altered hydrology affects sediment transport capacity and duration of mobilizing flows
- Additional analyses necessary to provide a more complete picture of potential change on channel morphology and habitat in lower Susitna River

END