Sediment Transport Analysis

2012 Technical Memorandum: Initial Sediment Balance for the Middle and Lower Susitna River for Existing and with Project Conditions March 28, 2013

> Technical Workgroup Meeting March 28, 2012

Prepared by: Tetra Tech Prepared for: Alaska Energy Authority

2012 Study Technical Memorandum: Initial Sediment Balance for the Middle and Lower Susitna River for Existing and with Project Conditions March 28, 2013

- Part of 2012 Study G-S4: Reconnaissance-Level geomorphic and Aquatic Habitat Assessment of Project Effects on Lower River Channel
- Date Filed with FERC: 3/1/2013
- Date Posted to AEA website: 3/1/2013

Sediment Transport Analysis Study Objectives

- Assess suitability of previously published sediment transport relationships - update if necessary
- Select most appropriate sediment transport relationships
- Estimate annual loads under pre-Project and Maximum Load Following OS-1:
 - Silt and clay /wash load (suspended load)
 - Sand load (suspended and bedload)
 - Gravel load (bedload)
- Preliminary estimate of the overall sediment balance in the Middle and Lower Susitna River segments:
 - Pre-Project hydrologic conditions
 - Maximum Load Following OS-1 hydrologic conditions

USGS Sediment Transport Data Summary

	Number of Samples								
Gage Name	Suspended Silt/Clay		Suspended Sand		Bed-load Sand		Bed-load Gravel		Record
	Pre-1985	Post-1985	Pre-1985	Post-1985	Pre-1985	Post-1985	Pre-1985	Post-1985	
Susitna River at Gold Creek	45	5	46	5	45	0	38	0	1962 - 1986
Chulitna River near Talkeetna	48	2	46	2	48	0	48	0	1973 - 1986
Talkeetna River near Talkeetna	53	23	56	22	45	0	40	0	1967 - 1995
Susitna River at Sunshine	52	2	53	2	50	0	50	0	1971 - 1986
Yentna River near Susitna Station	24	1	24	1	13	0	13	0	1981 - 1986
Susitna River at Susitna Station	37	9	35	9	13	5	13	3	1975 - 2003

Previous Study

<u>USGS OFR 87-229</u>

- Primarily used data from early- to mid-1980s
- Sediment load computed for single year (1985)
- Divided total sediment load into 4 components:

Clean, reliable energy for the next 100 years.

- Suspended silt/clay
- Suspended sand
- Sand bedload

SUSITNA-WATANA HYDRO

Gravel bedload

Current Study

- Updated data sets to include newer data
- Updated sediment load rating curves where appropriate
- Annual loads: 61-year extended record
- Applied MVUE bias correction to rating curves
 - Increases loads by 15% to >200% compared to regression line, depending on scatter in base data set
- Divided load into 3 components:
 - Silt/clay (Suspended load)
 - Sand bed material (Combination of suspended and bedload)
 - Gravel (Bedload)

Susitna River at Gold Creek

Chulitna River near Talkeetna

Talkeetna River near Talkeetna

Susitna River at Sunshine

SUSITNA-WATANA HYDRO Clean, reliable e

Clean, reliable energy for the next 100 years.

Yentna River near Susitna Station

SUSITNA-WATANA HYDRO Clean, reliable e

Susitna River at Susitna Station

SUSITNA-WATANA HYDRO Clean

Sediment Transport Relationships 14

	Suspend	ed Load	Bed Load		
Gage Name	Silt/Clay	Sand	Sand	Gravel	
Susitna River at Gold Creek	6.97E-10 Q ^{3.00}	1.09E-11 Q ^{3.38}	4.49E-9 Q ^{2.46} 1.02E-11 Q ^{3.10}	1.89E-20 Q ^{4.84}	
Chulitna River near Talkeetna	1.12E-7 Q ^{2.66}	1.01E-5 Q ^{2.14}	5.1E-6 Q ^{2.09} 3.51E-12 Q ^{3.63}	2.6E-9 Q ^{2.80} 1.23E-14 Q ^{4.22}	
Talkeetna River near Talkeetna	2.33E-8 Q ^{2.81}	2.58E-6 Q ^{2.32}	2.17E-5 Q ^{1.82} 1.43E-12 Q ^{3.99}	Parker Equation	
Susitna River at Sunshine	2.29E-8 Q ^{2.61}	3.28E-6 Q ^{2.12}	8.16E-4 Q ^{1.29}	3.11E-17 Q ^{4.07} 3.68E-2 Q ^{0.820}	
Yentna River near Susitna Station	1.27E-7 Q ^{2.48}	4.10E-6 Q ^{2.14}	1.93E-4 Q ^{1.63}	1.99E-9 Q ^{2.49}	
Susitna River at Susitna Station	4.49E-8 Q ^{2.46}	3.31E-3 Q ^{1.46}	4.45E-7 Q ^{2.04}	4.85E-10 Q ^{2.47}	

from Knott et al (1987)

New Regression

Q = Water discharge in cfs

Sediment load in tons/day (tpd)

SUSITNA-WATANA HYDRO

WY 1985 Sediment Load Comparison

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

15

19.3

6.7

17.0

Susitna

Station

0.30

0.26

Susitna

Station

0.13

Gold Creek Annual Sediment Load

Pre-Project

Max LF OS-1

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

W-tor Volume (acre-ft)

Sunshine Annual Sediment Load

Pre-Project

Max LF OS-1

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Susitna Station Annual Sediment Load ¹⁸

Chulitna Annual Sediment Load

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Talkeetna Annual Sediment Load

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Annual Sediment Discharge, Q_s (tons)

Water Volume (acre-ft)

Yentna Annual Sediment Load

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Average Annual Load Pre-Project

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Average Annual Load Max LF OS-1

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Average Annual Sand Load

(Including estimated annual sand load from ungaged tributaries)

Average Annual Gravel Load

(Including estimated annual gravel load from ungaged tributaries)

- Dam will trap all sand/gravel load and most (~90%) silt/clay load.
- Impacts to sediment balance:
 - Greatest in Middle River
 - Diminish in downstream direction

Approximate Sediment Loads under Max Load Following OS-1 as % of Pre-Project Load						
Location	Silt/Clay	Sand	Gravel			
Below Watana Dam	10%	0%	0%			
Gold Creek	16%	15%	7%			
Sunshine	82%	82%	51%			
Susitna Station	92%	91%	80%			
and the second second second second						

SUSITNA-WATANA HYDRO

• Timing of effects:

Discharge - immediate for all sizes

- Silt/clay supply Immediate
- Sand supply Near- to intermediate-term (less than decade?)
- Gravel supply Decades(?) in lower part of Middle River and Lower River

• Sediment Transport Balance

Silt/clay load supply-limited

Sand load supply-limited to at least Sunshine

➤Gravel load capacity-controlled

Sand Load

- Approximately in balance through Sunshine
- Excess load
 - Sunshine to Susitna Station:
 - Increase from ~560k tons to ~690k tons

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

Gravel Load

- Approximately in balance through Sunshine
 - Slight increase under Max LF OS-1
- Excess load
 - 3 Rivers to Sunshine:
 - Increase from ~590k tons to ~670k tons
 - Sunshine to Susitna Station:
 - Decrease from ~250k tons to ~170k tons

END