

Water Resources Technical Work Group Meeting 1st Quarter 2013 Ice Processes

SUSITNA-WATANA

HYDROELECTRIC PROJECT

March 28, 2013

Prepared by HDR Alaska, Inc.

Ice Processes Presentation Outline

- FERC Study Plan Determination delayed until April 1st
- 2012 Study Results Summary
 - Previous Studies
 - Observed Processes
 - Prediction of effects
 - Open Leads
 - Breakup Progression and Ice Jams
 - Freeze-up Progression
- 2013 1st Quarter Work to Date

Existing Information

- All measurements and observation locations are compiled into an Access database and are sorted by river mile.
 - Freeze-up and breakup progression observations, 1980-1985
 - Open lead mapping in the Middle River, 1983
 - Winter flow observations at Lower River fish habitat sites
 - Ice thickness and stage measurements in Lower River and Middle River
 - Frazil ice density, porosity, and structure
 - Observations of geomorphic and sediment transport effects of ice jams
- Model predictions of post-project ice cover progression, ice thickness and elevation, and the open-water lead downstream of the dam site.

Existing Information

Alaska Energy Authority

Susitna River Ice Processes Study

Historic Susitna River Ice Events

Susitna River Bridge - May 16, 1921

Search Historic Informatio

View/Print Historic Report

Back to Main Menu

Susitna River Freeze Up Process – Frazil Production

- River cools to 32 degrees
- Frazil appears, flows downstream
- Border ice grows
- Upper and Middle Susitna Rivers and Yentna River are dominant frazil sources. Chulitna and Talkeetna produce minor frazil volumes.

Susitna/Talkeetna Relative Frazil Volumes

6-15

Susitna River Freeze Up Process – Frazil Production and Border Ice Growth

FIGURE 5.4

October 17, 1983. Low air temperatures and minimal solar radiation influence the water surface in the upper river canyons. These factors together with high turbulence generates large volumes of frazil slush in October. This is near the mouth of Jay Creek, looking downstream.

R&M 1984

FIGURE 6.2

October 17, 1983. Border ice begins to develop on the middle river. This is near the Chulitna confluence, flow is right to left.

Susitna River Freeze Up Process - Bridging

- Ice bridges over
 Devil Canyon first,
 but frazil is
 transported
 beneath the
 bridges and cover
 does not progress
 upstream.
- Ice bridges near tidewater, blocks frazil from flowing out to Cook Inlet, and cover progresses upstream.
- In low water years, intermediate bridges may form, cutting off frazil from Middle River.

Devil Canyon Bridge, October

Ice Bridge near Tidewater, October

FIGURE 6.6

October 28, 1983. High tides occurred during this time in October. The slush ice velocity slowed to the point that friction along the bank and within the ice pack exceeded the friction imparted by the slow moving water, and the flowing slush stopped moving. Looking upstream at river mile 9 ice bridge.

R&M 1984

Ice Cover Progression

s6/mm72

Juxtaposition – rapid ice cover progression in lower gradient reaches. Surface velocities must be under ~3 feet/sec for ice to accumulate.

FIGURE 6.9

November 1, 1983. The ice cover lengthens or progresses upstream accumulates along the "leading edge". Water level rises due to displace ice and resistance to flow. This is near river mile 31, flow is left to right.

Ice Cover Progression

Hydraulic Thickening – ice cover compresses and thickens before progressing upstream in steeper reaches. The thicker ice slows water velocities upstream to less than 3 feet/second to allow ice to accumulate. Creates a hummocky cover, and more staging than juxtaposition.

FIGURE 6.35

December 28, 1983. Near LRX-9. This ice cover is deteriorating as evidenced by the sagging cover over the flowing water. A lead will eventually open up in the sagged portion of the section. Flow is left to right.

Ice Cover Progression - Staging

R&M 1984

As ice fills the channel, the water surface rises upstream and velocity slows. The steeper the reach, the thicker the ice, the higher the water must rise in order to allow the ice cover to progress. Once the ice cover has progressed past a point, the water surface drops as the underside of the ice cover is smoothed and open leads develop. Staging up to 7 feet was observed in1983 in the Lower River.

Ice Cover Progression – Timing (1980-1985)

Ice Cover Progression - Timing

R&M 1984

Ice Covered Conditions

- Ice cover increases drag and decreases channel area
- Stage (water surface elevation) increases and velocity decreases for the same discharge
- As discharge decreases, the ice cover over the active channel sags.
- Increased stage during ice cover in the main channel may drive upwelling groundwater into lateral habitats (Trihey 1982 found that at one location, an ice-covered flow of 1500-2500 cfs had an stage equivalent to 18,000 cfs under open water.)

R&M 1984

Open Leads

- Open leads were observed all study years, but were systematically mapped between Sunshine and Devil Canyon in March, 1983.
- Some reaches were found to have recurrent velocity leads, although the configuration of leads varied between years.
- Thermal leads occurred in side sloughs every year of the study.

PHOTO 4.13

Susitna River at river mile 106 on November 17, 1982. Flow is from the upper right to lower left. Ice cover has telescoped to cover the river channel from bank to bank. Note the sagging ice cover over the narrow winter channel and the open leads created by turbulent flow.

PHOTO 4.14 Dpen leads on February 2, 1983 at river mile 103.5, view looking downstream. Note the slush ice cover developing in the foreground.

SUSITNA-WATANA

1980-1985 Susitna River Breakup Chronology

- The Lower River is exposed to the most solar radiation and warmest temperatures, and melts out first (late April to early May)
- The Middle River breaks up as upper basin snowmelt increases. Breakup dates in the Middle River ranged from May 8 to May 24 between 1975 and 1985.
- Upper River breakup was presumed to occur after the Middle River.

1980-1985 Susitna River Breakup Processes

- Thermal breakup in Lower River combined with the unconfined channel geometry resulted in few observed overbank events during breakup.
- Middle River breakup varied in severity depending on weather in April and May. The most dynamic breakups were driven by rapid flow increases lifting and physically breaking the ice cover.
- The timing and progression of jamming in the Middle River does not appear to be systematic, although jams tend to occur in the same places.

RM 108, ARRC Photos

Effects of Breakup on Habitat, Vegetation and Geomorphology

- In the Middle River, breakup jams have created new side channels/sloughs, (Slough 11 formed in 1976) and significantly scoured existing lateral habitats.
- In the Middle River, ice jams were correlated with deep scour holes in the main channel.
- Ice jam breakouts often drove ice overbank and damage trees and railroad tracks in the Middle River.

1985 Modeling Results and Predicted Project Effects (Middle River – Watana Only)

- The dam would release above-freezing water, creating an open reach extending 40-50 miles downstream of the dam (ice cover would end just downstream of Gold Creek in warm years, downstream of Portage Creek in cold years)
- The formation of an ice cover at Talkeetna would be delayed by 2-4 weeks (3 weeks on average).
- Within the open-water reach, stages would be lower than or equal to natural ice-covered conditions.
- Within the ice-covered reach, stages would be 2-7 feet higher than natural conditions.
- The increased stage may result in breaching of slough berms in the icecovered reach of the Middle River.
- Breakup would occur 2-3 weeks earlier, and breakup jams in the Middle River would be decreased in severity.

1980's Modeling Results and Predicted Project Effects (Middle River – Watana Only)

SUSITNA HYDROELECTRIC PROJECT MAXIMUM SIMULATED WINTER RIVER STAGES 1981-82 WEATHER CONDITIONS (AVERAGE WINTER) THREE-STAGE PROJECT VS NATURAL CONDITIONS

TABLE 3

BLOUGH OR BIDE CHANNEL	RIVER MILE	THRESHOLD	NATURAL	STAGE I		STAGE N		STAGE IN	
				CASE E-VI	CARE E-I	CASE E-VI	CASE E-I	CASE E-VI	
Whisters	101.5	367	568	(576)	070	570	270	070	676
Gash Crock	1120	Unknown	455	457	458	459	458	457	457
-	112.3	(Liphand)	467	459	401	401	461	450	460
	114.1	476	472	475	178	676	476	474	475
ME 18	118.5	482	640	(M)	1900	402	100	480	486
MS 11	115.5	467	490	682	193	(463	490	80	698
Curry	120.0	Unknown	523	526	5.76	521	5/20	518	\$22
Moose	123.5	Unknown	549	565	155	551	561	545	545
BA West	126.1	573	571	678	574	673	673	569	509
BA East	127.1	542	(563)	645	686	645	804	581	582
•	129.3	604	806	607	607	605	26053	603	903
18 m/s	130.6	Unknown	620	620	621	619	619	017	617
4th July	131.0	Unknown	629	633	632	630	630	620	828
SA	133.7	861	ES1	850	856	649	649	850	850
10 m/s	134.3	867	267	884	663	655	655	656	856
11 d/s	135.3	Unknown	670	675	674	667	662	668	668
33	136.5	687			127	687	682	084	684
17	139.3	Unknown	L	715	715	714	714	715	715
20	140.5	730	BOIMDARY OF	729	729	728	728	729	729
21 (A6)	141.8	742	EMILE A TICHS	742	747	746	746	747	747
21	142.2	755	100000000	753	753	752	152	753	753
22	144.8	760		787	786	785	785	787	767
LAX 3 Ice From	Starting Dat		11.10	15.0	12 10	12 29	12 29	12	11
Max. Sce Front Estant (River Mile) 137 4/			1374/	139	139	133	133	114	120
Mais Out/Breakup Data 5-10			5 10	4.28	4 29	376	3 26	36	36

Predicts breaching of Whiskers Slough, MSII, 8A, 9, 9A, 10, 11.

HYDROELECTRIC PROJECT

Harza-Ebasco 1985

1980's Modeling Results and Predicted Project Effects Whiskers Slough

AEIDC 1985

SUSITNA-WATANA

2012 Study Area

2012 Open Leads

- Mapped from mouth to Oshetna Confluence
- Thermal leads
- Velocity Leads
- Some unknown
- Many locations similar to 1983 mapping (Middle River Sloughs)

2012 Open Leads – Lower River

Thermal lead with tannic staining, RM 15, PRM 19.6

Mid-river gravel bar seep, RM 32, PRM 36

2012 Open Leads – Lower River

Velocity Leads near Talkeetna, RM 97, PRM 100.5

2012 Open Leads – Middle River Thermal

Slough 8A, RM 126, PRM 130

Slough 1, RM 135, PRM 139

2012 Open Leads – Middle River Velocity

Devil Canyon, RM 152, PRM 156

2012 Open Leads – Middle River above Devil Canyon

RM 170 Velocity lead opening up, April 2012

2012 Open Leads – Upper River

Vee Canyon, RM 222, PRM 224

Oshetna Confluence, RM 232, PRM 234

2012 Breakup Observations

- Very mild
 breakup
 occurred
 from April
 25th to May
 5th.
- Long period

 of diurnal
 melt/freeze
 allowed
 snowpack to
 slowly run off
 while the ice
 weakened.

Lead opening up on April 23, 2012, RM 133, PRM 136

2012 Breakup Near Mouth

RM 10, PRM 15, April 27th (above) and April 30th (right)

2012 Breakup Observations – Lower River

RM 62, PRM 66 Ice jam, April 30, 2012

RM 32, PRM 36 Ice jam, April 30, 2012

SUSITNA-WATANA

2012 Post-Breakup – Lower River

RM 10, PRM 15 eroded bank, May 10, 2012

RM 26, PRM 30 stranded ice, May 9, 2012

2012 Breakup – Gold Creek/Slough 11 RM 134-136, PRM 137.5-140

April 27th

2012 Breakup Observations – Gold Creek/Slough 11

May 2nd, Slough 11

Jam Moved Downstream to RM 129, PRM 132.5

May 2nd, Slough 9

2012 Breakup – Gold Creek/Slough 11

May 2nd, Slough 11 Entrance

2012 Breakup – Slough 9

Side channel entrance post-breakup, May 9th

2012 Breakup – Devil Canyon

Remains of ice shelf, May 2. Ice cover Composed of rounded fine slush balls.

Leads opening, April 27th

2012 Breakup – Upper River

RM 221, PRM 223, May 9th

2012 Breakup – Watana Dam Site Area

Stranded ice chunks, above and "bulldozed" soil, right. May 9, RM 183, PRM 186

2012 Breakup Summary

- Dominantly thermal breakup, within normal timeframe.
- Very little observed damage to vegetation
- Very little potential for slough scouring or channel change
- Minor sediment deposition and erosion

2012 Freeze-up Conditions

- Much higher than average flows during early ice formation (October 12th flows were twice average at Gold Creek and Sunshine, and near proposed project flows)
- Colder than average November, warmer December and January
- Unusually high water as ice front reached Talkeetna
- Progression followed patterns observed in the 1980's.

Frazil Ice, October 16th, Whiskers Slough

Frazil Ice and Border Ice October 26th

Slough 6A, RM 112, PRM 115.5

2012 Freeze-up – Devil Canyon October 22

Lower Devil Canyon Ice Bridge, RM 151, PRM 155

Bridge near Tidewater, October 23

149.9

2012 Freeze-up Observations – Lower River

- Ice cover progressed rapidly at first then slowed – 11-12 miles/day up past the Yentna, 7 miles/day past Sunshine, 4 miles/day to Talkeetna.
- Staging flooded gravel bars and braidplain, but not vegetation.
- Cover was largely juxtaposed below
 Yentna, hummocky
 through Delta Islands
 and Sunshine.

Ice cover leading edge, RM 68, PRM 72.4

2012 Freeze-up Observations – Lower River Staging

Water level rose 4 feet at ESS10 (RM 15, PRM) as ice front progressed

Water level rose 8 feet at the USGS gage at the Parks Highway Bridge as ice front progressed

2012 Freeze-up – Lower River Staging

Flooded gravel bars at RM 54, PRM 59 on October 29th

2012 Freeze-up – Lower River Staging at Sunshine

Parks Highway Bridge, November 1st

Parks Highway Bridge, November 7th

2012 Freeze-up Flooding Talkeetna Area, Nov 15th

2012 Freeze-up Flooding Talkeetna Area, Nov 15th

2012 Freeze-up Staging, Talkeetna Area

Pressure transducer readings indicate 7 feet of rise at ESS30 (RM 97, PRM 100.3) above and at least 5 feet at ESS35 (RM 99, PRM 102.3) below.

HYDROELECTRIC PROJECT

2012 Freeze-up – Slough 6A, RM 112, PRM 115.5

October 26th

2012 Freeze-up – Slough 6A, RM 112, PRM 115.5

November 28th

Anchor Ice, Middle River Above Devil Canyon

RM 172, PRM 175, November 15th, 2012

2012 Freeze-up Observations – Upper River

2012 Freeze-up Observations – Upper River

Oshetna River breakout flood, November 15th

2012 Study Summary

- Mapped open leads from mouth to Oshetna confluence. Determined that most thermal leads are in the same location as in the 1980's, while velocity leads are in the same general locations.
- Observed a very mild breakup, which may be similar to post-project conditions in that flow did not increase rapidly and ice breakup was mostly thermal.
- Mild breakup meant few observed effects on channel morphology, vegetation, or fish habitat.
- Observed a freeze-up with unusually high initial flows, similar to post-project conditions, although flows dropped rapidly.
- Documented Upper River ice cover formation.
- Progression of freeze-up and breakup was within the range of those documented 1980-1985.

Ice scar near Whiskers Creek. This did not happen in 2012.

Ice Process Studies: 1st Quarter Activities, 2013

- Measured thickness, elevation, and discharge (January and March)
- Processed freeze-up videos
- Continued freeze-up reconnaissance until January 9th
- Started developing Lower River HEC-RAS models with ice cover
- Started review of cold-regions hydropower projects
- Mapped open leads, March

