

Technical WorkGroup Meeting Fish and Aquatics Instream Flow

Update on Habitat Suitability Criteria Development

27 March 2013

Prepared by R2 Resource Consultants

Topics of Discussion

- Development of Habitat Suitability Criteria (HSC) Curves
 - What are HSC Curves?
 - Review of 1980's Project data (RSP 8.5.2.6)
 - Selection of target species and life stages
 - Species and life stage periodicity
 - Development of 1980's HSC curves
 - Collection of site-specific HSC data (2012 Pilot Study) (2012 IFS Compendium of Technical Memoranda, Section 6)
 - Data collection methods
 - Review HSC utilization frequency plots
 - Proposed 2013 HSC data collection (RSP 8.5.4.5)
 - Next Steps: Schedule HSC Technical Meeting
- Development of HSI Curves (RSP 8.5.4.5)
 - Benthic macroinvertebrates & algal habitats
 - Stranding and trapping criteria (bed slope, minimum depth, inundation rate/timing)
 - Fish passage/connectivity (side channels and sloughs)

HSC Curve Development

Habitat Suitability Criteria (HSC)

- HSC curves represent the functional relationship between independent variables such as depth, velocity, substrate, cover, etc., and the response of a species life stage to a gradient of the independent variable (suitability).
- HSC curves for different variables are combined in a multiplicative fashion to rate the suitability of discrete areas of a stream for use by a species and life stage of interest.
- Designed for use in Instream Flow Incremental Methodology to quantity changes in habitat variables related to various flow regimes.

3

4

HSC Curve Development

The USGS classifies HSC curves into three categories (Categories 1, 2, and 3) based on the types of data used (Bovee 1986).

Category 1 curves – derived from personal experience and professional opinion, from literature based curve sets, or from negotiated definitions.

Category 2 curves – developed from sitespecific data that reflect microhabitat

attributes measured at locations used by the target fish species.

Category 3 curves - rely on site-specific data and are designed to factor in the availability of certain habitat attributes into the curves thereby reducing bias.

Review of 1980's HSC Data Species Presence

- Historically, the Susitna River supported at least 20 fish species including both resident and anadromous species
 - Chinook, sockeye, chum, coho, pink salmon
 - Rainbow, Arctic grayling, Dolly Varden, round whitefish, humpback whitefish
 - Burbot, longnose sucker, Bering cisco, eulachon, sculpin, stickleback, Arctic lamprey, pike, lake trout
- Species richness is generally highest in the Lower River Segment and lowest in the Upper River Segment

	Susitna River Segment						
Common Name	Lower	Middle	Upper				
Arctic grayling	Х	Х	Х				
Dolly Varden	Х	Х	Х				
Humpback whitefish	Х	Х	Х				
Round whitefish	Х	Х	Х				
Burbot	Х	Х	Х				
Longnose sucker	Х	Х	Х				
Sculpin	Х	Х	Х				
Eulachon	Х						
Bering cisco	Х						
Threespine	V	v					
stickleback	Λ	^					
Ninespine stickleback	Х						
Arctic lamprey	Х	Х					
Chinook salmon	Х	Х	Х				
Coho salmon	Х	Х					
Chum salmon	Х	Х					
Pink salmon	Х	Х					
Sockeye salmon	Х	Х					
Rainbow trout	Х	Х					
Northern pike	Х						
Lake trout	Х						

Fish Species Distribution and Relative Distribution

7

(Jennings 1985, Delaney et al. 1981

Species Periodicity

- Fish periodicity describes the temporal and spatial utilization of main channel, off-channel, and tributary habitats in the Susitna River by individual fish species and life stages
- Periodicity information/tables developed for 14 species and up to 9 different life stages per species
- Information based on studies conducted in the 1980s and 2000s. (Barrett et al. 1983, Jennings 1985, Thompson et al. 1986, Yanusz et al. 2007 & 2011, and Merizon et al. 2010)
- Adult migration timing based on; fishwheel; radio telemetry and capture-mark-recapture studies.
- Spawning timing determined from visual observation during foot, boat and aerial surveys.
- Juvenile outmigration based on capture at stationary migrant traps.
- Periodicity of egg incubation based on adult spawn timing, egg development time from fertilization to emergence, and observations of fry emergence.

Species and Life Stage Periodicity (Pink Salmon)

	Habitat Type																	
Life Stage	Main Channel	Side Channel	Tributary Mouth	Side Slough	Upland Slough	Tributary	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Middle Susitna River																		
Adult Migration																		
Spawning												ı						
Incubation																•		
Fry Emergence																		
Age 0+ Migration																		
Lower Susitna River																		
Adult Migration																		
Spawning																		
Incubation																		
Fry Emergence																		
Age 0+ Migration																		

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

1

		H	abita	it Typ)e													
Chinook Salmon Life Stage	Main Channel	Side Channel	Tributary Mouth	Side Slough	Upland Slough	Tributary	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	1C Dec
Middle Susitna Riv	er		•															
Adult Migration																		
Spawning																		
Incubation																		
Fry Emergence																		
Age 0+ Rearing																		
Age 0+ Migration																		
Age 1+ Rearing																		
Age 1+ Migration																		
Lower Susitna Rive	er																	
Adult Migration					1													
Spawning																		
Incubation																		
Fry Emergence																		
Age 0+ Rearing												·						
Age 0+ Migration																		
Age 1+ Rearing																		
Age 1+ Migration																		
1																		

1980's HSC Data Collection

- 4-years of data collection (1981-1984) (Estes and Vincent-Lang 1984)
- Middle River Segment focused on tributary, slough, and side channel habitats between Devils Canyon and Three Rivers
- Lower River Segment focused slough, side channel, and tributary mouths between Three Rivers and Yentna River
- 35 separate sampling sites (Estes and Vincent-Lang 1984)
- Sampled twice a month from May-October
- Separate sampling efforts for resident species, rearing juvenile salmon, and spawning salmon
- Developed HSC curves for chum, sockeye, Chinook, coho, and pink salmon, rainbow trout, Arctic grayling, round whitefish, and longnose sucker

1980's HSC Data Collection

• Resident Fish Species

- Focused on tributaries, tributary mouths, and sloughs
- Sampling methods included electrofishing, hook-and-line, and radio telemetry
- Rearing Juvenile Salmon
 - Focused on tributaries, upland sloughs, side sloughs, side channels, and limited main channel
 - Systematic sampling of 300 sq. ft. cells (50 ft. x 6 ft.) selected for representativeness and homogeneous
 - Utilized electrofishing and seining

Spawning Salmon

- Focused on tributaries, tributary mouths, sloughs and side channels
- Proximity to hydraulic modeling sites (evaluation of preference)
- Visual observations from streambank

1980's Resident Adult HSC Curve Observations

Species	Boat Electrofishing	Hook and Line
Rainbow trout	44	99
Arctic grayling	138	2
Round whitefish	384	
Longnose sucker	157	
Burbot	18	
Humpback whitefish	15	
Dolly Varden	2	
Total	758	101

1980's Resident Adult HSC Curve Observations

	Species	Boat Electrofishing	Hook and Line
	Rainbow trout	44	99
	Arctic grayling	138	2
	Round whitefish	384	
	Longnose sucker	157	
	Burbot	18	
	Humpback whitefish	15	
	Dolly Varden	2	
	Total	758	101
SUSITNA	-WATANA HYDRO Clean, reliable ene	rgy for the next 100 years.	>88%

1980's Juvenile HSC Curve Observations ¹⁵

Species	Electro	fishing	Beach	Seining	Total		
	Effort	Catch	Effort	Catch	Effort	Catch	
Chinook	871	3,066	389	1,329	1,260	4,395	
Coho	871	1,907	389	113	1,260	2,020	
Sockeye	658	814	355	192	1,013	1,006	
Chum	408	1,152	106	5	514	1,157	
Total	2,808	6,939	1,239	1,639	4,047	8,578	

Effort=number of cells (50 ft. x 6 ft.) sampled; catch=total catch per cell Suchanek et al. 1984a

1980's Juvenile HSC Curve Observations ¹⁶

Species	Electro	fishing	Beach	Seining	Total		
	Effort	Catch	Effort	Catch	Effort	Catch	
Chinook	871	3,066	389	1,329	1,260	4,395	
Coho	871	1,907	389	113	1,260	2,020	
Sockeye	658	814	355	192	1,013	1,006	
Chum	408	1,152	106	5	514	1,157	
Total	2,808	6,939	1,239	1,639	4,047	8,578	

Effort=number of cells (50 ft. x 6 ft.) sampled; catch total catch per cell Suchanek et al. 1984a

>80%

1980's Spawning HSC Curve Observations ¹⁷

			Macr	oabitat Type					
	Main	Side			Tributary				
Species	Channel	Channel	Slough	Tributary	Delta	Total			
Chum	0	4	298	0	31	333			
Sockeye	0	0	81	0	0	81			
Chinook	0	0	0	265	0	265			
Pink ¹			No HSC Da	ata Collected					
Coho1		No HSC Data Collected							
Total	0	4	379	265	31	679			

¹Utilized Spawning HSC curves develop for Terror Lake Project

1980's Spawning HSC Curve Observations ¹⁸

			Macr	oabitat Type						
	Main	Side			Tributary					
Species	Channel	Channel	Slough	Tributary	Delta	Total				
Chum	0	4	298	0	31	333				
Sockeye	0	0	81	0	0	81				
Chinook	0	0	0	265	0	265				
Pink ¹		No HSC Data Collected								
Coho ¹			No HSC D	ata Collected						
Total	0	4 (379	265	31	679				
¹ Utilized Spawnin	g HSC curves develo	op for Terror Lake P	oject	.\						
		55.8%			39%					

1980's HSC Curves Developed

Species	Life Stage	Depth	Velocity	Substrate	Cover
Chum	Spawning	М	Μ	Μ	
Salmon	Juvenile	M,L	M,L		M,L
Sockeye	Spawning	М	М	М	
Salmon	Juvenile	M,L	M,L		M,L
Chinook	Spawning	М	Μ	М	
Salmon	Juvenile	M,L	M,L		M,L
Coho	Spawning	М	Μ	М	
Salmon	Juvenile	M,L	M,L		M,L
Pink Salmon	Spawning	М	Μ	М	
Rainbow Trout	Adult	М	М		М
Arctic Grayling	Adult	М	М		М
Round	Adult	М	Μ		М
Whitefish	Juvenile	М	М		М
Longnose Sucker	Adult	М	М		М

M=middle river; L=lower river

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

2012 HSC Data Collection Summary ²²

- Focused on main channel, side channel, side slough, and tributary mouth/delta habitat areas (1980s surveys)
- Sampling was concentrated in the Middle and upper portion of the Lower River Segment with known fish use
- Hunt for Fish Sampling vs. Random or Stratified Sampling
- Sampling timing corresponded to peak of spawning activity (2012 IFS Compendium of Technical Memoranda, Section 6)
- Cooperative effort between R2 and LGL
- R2 sampling events : July 17-19, August 21-23, September 17-19
- LGL sampling: August 15-29
- Methods included snorkel, seining, radio telemetry (LGL), and pedestrian surveys
- Total of 284 HSC measurement: 117 spawning

167 adult, juvenile, fry

Proposed HSC Curve Development Priority₂₃

Common Name	Low	Moderate	High
Arctic grayling			X
Dolly Varden		X	
Humpback whitefish		X	
Round whitefish	Х		
Burbot		X	
Longnose sucker		X	
Sculpin	X		
Eulachon		X	
Bering cisco	Х		
Threespine stickleback	X		
Arctic lamprey	X		
Chinook salmon			X
Coho salmon			X
Chum salmon			X
Pink salmon			X
Sockeye salmon			X
Rainbow trout			X
Northern pike	X		
Lake trout	X		

2012 HSC Sampling Sites

	Life	River	Macrohabitat		Possible Sampling	
Species	Stage	Segment	Areas	Sample Sites	Technique	Sample Timing
Chinook	Juvenile	Middle	Slough, side channel, tributary mouths	Slough 21, 8A, and 6A	Snorkel, electrofishing, seining	June, July, August, September
	Spawning	Middle	Tributary, mainstem	Indian R., 4 th of July Cr., Lane Cr.	Pedestrian survey, side scan sonar, Didson	July, August
Sockeve	Juvenile	Middle	Slough, side channel, tributary mouths	Slough 20, 9, 8, 6A	Snorkel, electrofishing, seining	June, July, August, September
	Spawning	Middle	Slough, and side channels	Slough 11, 8A,	Pedestrian survey, side scan sonar, Didson	August, September, October
Juvenile	Juvenile	Middle Lower	Slough, side channel, tributary mouths	Slough 6A, Lane Cr., Birch & Sunshine Cr.	Snorkel, electrofishing, seining	June, July, August, September
	Spawning	Middle	Tributary mouths	Indian R., 4 th of July Cr., Slough 8A	Pedestrian survey	August, September
	Juvenile	Middle	Slough, side channel, tributary mouths	Slough 21, 9, and 6A	Snorkel, electrofishing, seining	June, July, August,
Chum	Spawning	Middle Lower	Slough, side channel, mainstem, trib. delta	Slough 21, 11, and 8A Montana Cr.	Pedestrian survey, side scan sonar, Didson	August, September
Dink	Juvenile	Middle	Slough, side channel, tributary mouths	None specified	Snorkel, electrofishing, seining	June, July
PHIK	Spawning	Middle Lower	Slough, side channel, tributary delta	Slough 21, 15, and 11	Pedestrian survey	July, August

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

-

25

-

2012 HSC Data Collection – Adult & Juvenile Rearing

- Site specific data collection included:
 - Geomorphic reach
 - Macrohabitat type
 - Species identification
 - Fish length and age class (fry, juvenile, adult)
 - Relative position in the water column (distance from bottom)
 - Proximity to cover (woody debris, boulder, vegetation, etc.)
 - Water depth measured to nearest 0.1 ft using topset rod
 - Mean water velocity measured to nearest 0.01 ft/sec
 - Nose velocity measured at fish location in water column
 - Substrate composition (dominant, subdominant, % dominant)
 - Water temperature
 - Secchi disk transparency
 - location coordinates (GPS)

2012 HSC Data Collection – Spawning

- Site specific data collection included:
 - Geomorphic reach
 - Macrohabitat type
 - Species identification
 - Water depth at u/s of redd measured to nearest 0.1 ft
 - Mean water velocity measured to nearest 0.01 ft/sec
 - Substrate composition (dominant, subdominant, % dominant)
 - Redd dimensions (length and width)
 - Presence of groundwater upwelling
 - Water temperature
 - Turbidity (NTU)
 - Location coordinates (GPS)

Macrobabitat Tuna	River	Salmon Species						
Macronabitat Type	Segment	Chinook	Sockeye	Pink	Chum	Coho		
Sloughs								
Slough 21	Middle	0	0	0	7	0		
Slough 11	Middle	0	4	0	4	0		
4 th of July Slough	Middle	0	0	0	11	0		
Slough 10	Middle	0	0	0	0	0		
Slough 9A	Middle	0	4	0	19	0		
Slough 9	Middle	0	14	0	1	0		
Slough 8a	Middle	0	21	0	1	0		
Whiskers Slough	Middle	0	0	3	0	0		
Tributary Delta								
Indian River	Middle	0	0	0	3	0		
4 th of July Cr.	Middle	0	0	7	1	0		
Montana Cr.	Lower	0	0	7		0		
Side Channel								
Montana Cr.	Lower	0	0	0	10	0		
Total		0	43	17	57	0		

	River	Salmon Species						
Мастопарітат Туре	Segment	Chinook	Sockeye	Pink	Chum	Coho		
Sloughs					\land			
Slough 21	Middle	0	0	0	7	0		
Slough 11	Middle	0	4	0	4	0		
4 th of July Slough	Middle	0	0	0	11	0		
Slough 10	Middle	0	0	0	0	0		
Slough 9A	Middle	0	4	0	19	0		
Slough 9	Middle	0	14	0	1	0		
Slough 8a	Middle	0	21	0	1	0		
Whiskers Slough	Middle	0	0	3	0	0		
Tributary Delta			$\mathbf{\vee}$		Ŭ			
Indian River	Middle	0	0	0	3	0		
4 th of July Cr.	Middle	0	0	7	1	0		
Montana Cr.	Lower	0	0	7	0	0		
Side Channel								
Montana Cr.	Lower	0	0	0	10	0		
Total		0	43	17	57	0		

		Percent of				
Macrohabitat	Chinook	Sockeye	Pink	Chum	Coho	Total
Main Channel	0	0	0	0	0	0%
Side Channel	0	0	0	10	0	8.5%
Side Slough	0	43	3	43	0	76.1%
Trib. Delta	0	0	14	4	0	15.4%
Total	0	43	17	57	0	117/100%

		Spawning Observations by Species							
Macrohabitat	Chinook	Sockeye	Pink	Chum	Coho	Total			
Main Channel	0	0	0	0	0	0%			
Side Channel	0	0	0	10	0	8.5%			
Side Slough	0	43	3	43	0	76.1%			
Trib. Delta	0	0	14	4	0	15.4%			
Total	0	43	17	57	0	117/100%			

2012 HSC Observations

Number of observation by species and life stage

SCK=Chinook, SSE=sockeye, SPI=pink, SCH=chum, SCO=coho, GRA=artic grayling, WHB=humpback whitefish, LNS=longnose sucker

2012 HSC Observations by Species and life stage

Life	Total #		Fish Species							
Stage	Obs.	SCK	SSE	SPI	SCH	SCO	GRA	TRB	WHB	LNS
Adult	16	0	0	0	0	0	8	7	0	1
Juvenile	40	11	0	0	0	19	1	1	7	1
Fry	111	31	6	0	8	53	10	1	2	0
Spawning	117	0	43	10	64	0	0	0	0	0
Total	284	42	49	10	72	72	19	9	9	2

SCK=Chinook, SSE=sockeye, SPI=pink, SCH=chum, SCO=coho, GRA=artic grayling, TRB=rainbow trout, WHB=humpback whitefish

2012 HSC Observations by Species and life stage

Life	Total #		Fish Species							
Stage	Obs.	SCK	SSE	SPI	SCH	SCO	GRA	TRB	WHB	LNS
Adult	16	0	0	0	0	0	8	7	0	1
Juvenile	40	11	0	0	0	19	1	1	7	1
Fry	111	31	6	0	8	53	10	1	2	0
Spawning	117	0	(43)	10	64	0	0	0	0	0
Total	284	42	49	10	72	72	19	9	9	2

SCK=Chinook, SSE=sockeye, SPI=pink, SCH=chum, SCO=coho, GRA=artic grayling, TRB=rainbow trout, WHB=humpback whitefish

2012 HSC Observations – Juvenile Fish

HYDRO Clean, reliable energy for the next 100 years.

SUSITNA-WATANA HYDRO

2012 HSC Sampling methods: Snorkel Beach Seining Pedestrian

2012 Example Sampling Areas: Sloughs Clear water plumes Side channels

Chum Salmon Spawning

Sockeye Salmon Spawning

SUSITNA-WATANA HYDRO Clean, reliable energy for the next 100 years.

41

2013 HSC Sampling

- Focus on priority species and life stage, but collect HSC data on all fish observed/captured
- Goal of >100 measurement per life stage
- Sample Timing: May September
 - 8-10 samplings (approx. 2 x per month) by two field crews
 - Winter Sampling (March, April, & December)
- Methods:
 - snorkel, seining, video, pedestrian
 - Hook and line, electrofishing
 - DIDSON/Side Sonar
 - Price AA velocity meters
- Coordinate Field Activities
 - Fish distribution and abundance
 - Salmon escapement (LGL)
 - Cross train field crews (LGL, HDR, R2)

2013 HSC Sampling

- Sampling Site Selection ٠
 - River Segment \rightarrow Geomorphic Reach \rightarrow Mainstem Habitat Type \rightarrow Mesohabitat Type
 - Middle River Segment •
 - 6 Geomorphic Reaches (MR 1, 2, 5, 6, 7, and 8)
 - 10 Focus Areas (FA-184, 173, 171, 151, 144, 141, 138, 128, 115, 104)
 - Mainstem and mesohabitat mapping completed for entire segment (RSP Section 9.9)

Main Channel Habitats

- Main Channel
- Split Channel
- Braided Channel •
- Side Channel

Off-Channel Habitats

- Side slough w/o beaver activity
- Side slough with beaver activity
- Upland slough w/o beaver activity
- Upland slough with beaver activity ٠
- Backwater
- Tributary (up to 1.5-year return flow level)
- **Tributary mouth**
- Clear water plume

Susitna River at Gold Creek (PRM 140)							
Pre-Project Floo Instantaneou	d Frequency ıs Peaks	Flow Duration (Percent of Time Equaled or Exceeded)					
Return Period (year) Flow (Computed Curve), cfs		Pre-Project	Max LF OS-1				
1.01	26,200	8.62	1.19				
1.25	35,100	1.98	0.26				
1.5	38,800	1.13	0.11				
2	43,500	0.59	<0.1				
5	56,200	0.16	<0.1				
10	65,300	<0.1	<0.1				
20	74,600	<0.1	<0.1				
50	87,500	<0.1	<0.1				
100	98,000	<0.1	<0.1				

-

Susitna River at Gold Creek (PRM 140)								
Pre-Project Floo Instantaneou	d Frequency ıs Peaks	Flow Duration (Percent of Time Equaled or Exceeded)						
Return Period (year)	Flow (Computed Curve), cfs	Pre-Project	Max LF OS-1					
1.01	26,200	8.62	1.19					
1.25	35,100	1.98	0.26					
1.5	38,800	1.13	0.11					
2	43,500	0.59	<0.1					
5	56,200	0.16	<0.1					
10	65,300	<0.1	<0.1					
20	74,600	<0.1	<0.1					
50	87,500	<0.1	<0.1					
100	98,000	<0.1	<0.1					

-

Proposed 2013 HSC Sampling

- Sample Site Selection
 - Stratified Random (GRTS Random Sampling)
 - Hunt & Find (based on 1980's data and professional experience), or
 - Blend

Proposed Blended Approach

- Utilizes 2012 Habitat Mapping
- Stratifies by geomorphic reach, focus and nonfocus areas, and habitat composition
- Similar to Fish Distribution and Abundance
- Provides spatial coverage and random habitat unit selection
- Incorporates 1980's data and professional experience into sample site location

Proposed 2013 HSC Sampling

Proposed Blended Approach

	Geomorphic Reach								
	Outside Focus Area		Inside Focus Area						
•	Main & off-channel habitat types Randomly select 1 habitat unit	•	Main channel habitat types Randomly select 2 habitat units						
•	Select 1, 40-meter sampling site from within each habitat unit	•	Off-channel habitat types Randomly select 3 habitat units						
		•	Select 2, 40-meter sampling sites from within each habitat unit						

Focus		Geomorphic Reach Stratum						
Stratum	Habitat Stratum	MR-1	MR-2	MR-5	MR-6	MR-7	MR-8	Total
	Main Channel	2	2	2	2	2	2	12
	Split Main Channel					2	2	4
	Braided Main Channel				2			2
	Side Channel	2	2		2	2	2	10
	Side Slough w/o Beaver		3		3		3	9
Incido	Side Slough in Beaver Complex				3			3
Focus	Upland Slough w/o Beaver		3		3	3	3	12
Aleas	Upland Slough in Beaver Complex				3	3		6
	Backwater				1	2		3
	Tributary		1	1	3	1	1	7
	Tributary Mouth		1	1	2			4
	Clear Water Plume			1	1			2
	Subtotal Inside Focus Areas	4	12	5	25	15	13	74

49

Focus			Geomorphic Reach Stratum					
Stratum	Habitat Stratum	MR-1	MR-2	MR-5	MR-6	MR-7	MR-8	Total
	Main Channel	1	1	1	1	1	1	6
	Split Main Channel		1	1	1	1	1	5
	Braided Main Channel				1		1	2
	Side Channel	1	1		1	1	1	5
	Side Slough w/o		1	1	1	1	1	F
	Beaver		I	I	Ι	Ι	Ι	5
-	Side Slough in Beaver					1		1
	Complex					I		1
Outoido	Upland Slough w/o		1		1	1	1	Λ
Cuiside	Beaver		I		I	1	1	4
Aroos	Upland Slough in				1	1		2
Aleas	Beaver Complex				I	-		2
	Backwater		1		1	1	1	4
	Tributary		1	1	1	1		4
	Tributary Mouth		1	1	1	1		4
	Clear Water Plume		1		1	1		3
	Subtotal Outside Focus Areas	2	9	5	11	11	7	45
	Subtotal Inside & Outside Focus Areas	6	21	10	36	26	20	119

Proposed 2013 HSC Sampling Lower River Segment

- Lower River geomorphic mapping available
- Current mapping represents polygon units of main channel, side channels, sloughs, backwater, and tributary mouth geomorphic types (Tetra Tech 2013a)
- Two primary study areas with five tributary mouths in the lower river
- Representative/Critical Site Selection Approach
 - Identify key mainstem habitat types based on both habitat data and historic and contemporary (2012 surveys) fish utilization data
 - ✓ Proximity to IFS sampling sites
 - ✓ Focus on tributary mouths
- Select 2 sample sites within each representative habitat type located in close proximity (<2,000 ft) to the tributary mouths: Trapper Creek, Birch Creek, Sheep Creek, Caswell Creek, and Deshka River (2013 Focus Area TM).
- Coordinate with HDR eulachon spawning study

Lower River Segment

Geomorphic Reach	Project River Mile	Tributary Mouth
LR -1	94.5	Trapper Creek
LR-1	92.5	Birch Creek
LR-2	69.5	Sheep Creek
LR-2	67.0	Caswell Creek
LR-3	45.0	Deshka River

Clean, reliable energy for the next 100 years.

SUSITNA-WATANA HYDRO

HSC Sampling – Next Steps

- Convene Technical Meeting regarding 2013 sampling methods (HSC & HSI)
- Complete 2013 HSC data collection
- Review data and information from 2013 studies
- Refine, modify or add supplemental areas in Middle and Lower River Segments for 2014 sampling
- Statistical consideration on HSC curve development
 - Potential ways to address/define uncertainty
 - Boot Strap Analysis
 - Bayesian methods (combine 1980's curves + literature curves + site specific data to develop distributions of habitat usage).