#### Aquatic Resources Data Gap Analysis

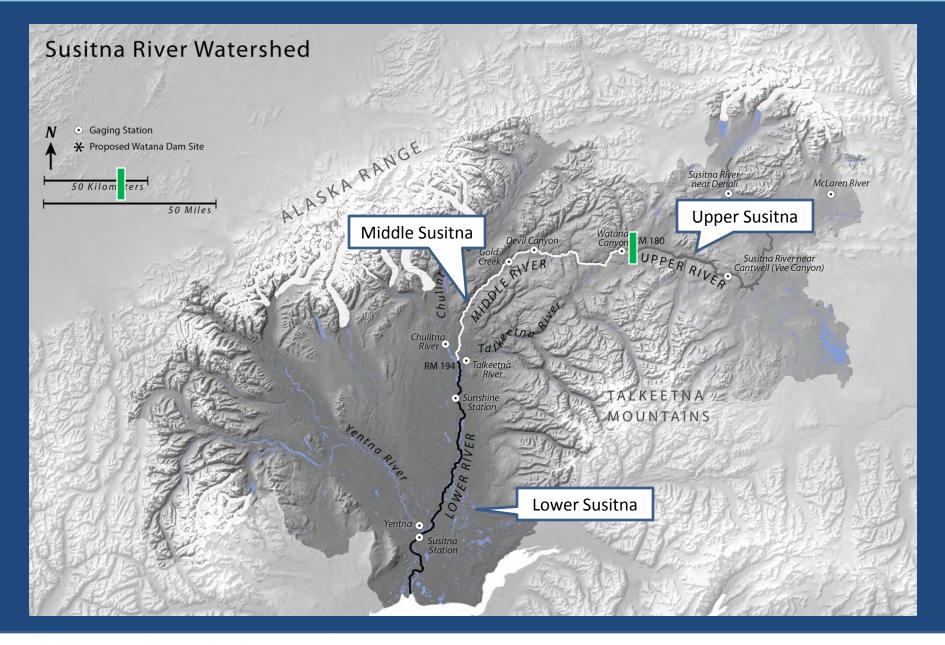
James Brady Senior Fisheries Scientist August 18, 2011












#### Overview

- Background
- Purpose/Objective
- Methods/Approach
- Findings by Topic Area













# Purpose/Objective

- Evaluate available information for its relevance and applicability to the Project
- Assumptions
  - the 1980s Low Watana phase approximates the proposed Susitna – Watana Dam project





# Approach

#### Navigation of 1980s literature

- 3,500 documents in the records database

#### **Key documents**

- 1984 Revised Draft license application Exhibit E
- 1983 Draft Environmental Impact Statement
- FY-1985 Aquatic Resources Plan of Study

#### Contemporary literature

- Agency document libraries
- ARLIS
- Agency contacts







# Findings Report Organization

AS - Adult Salmon

RR - Resident & Rearing Anadromous Fish

MP - Macroinvertebrates and Periphyton

WQ - Water Quality

HG - Hydrology, Geomorphology, and Climate

IS - Instream Flow

**MM** - Marine Mammals





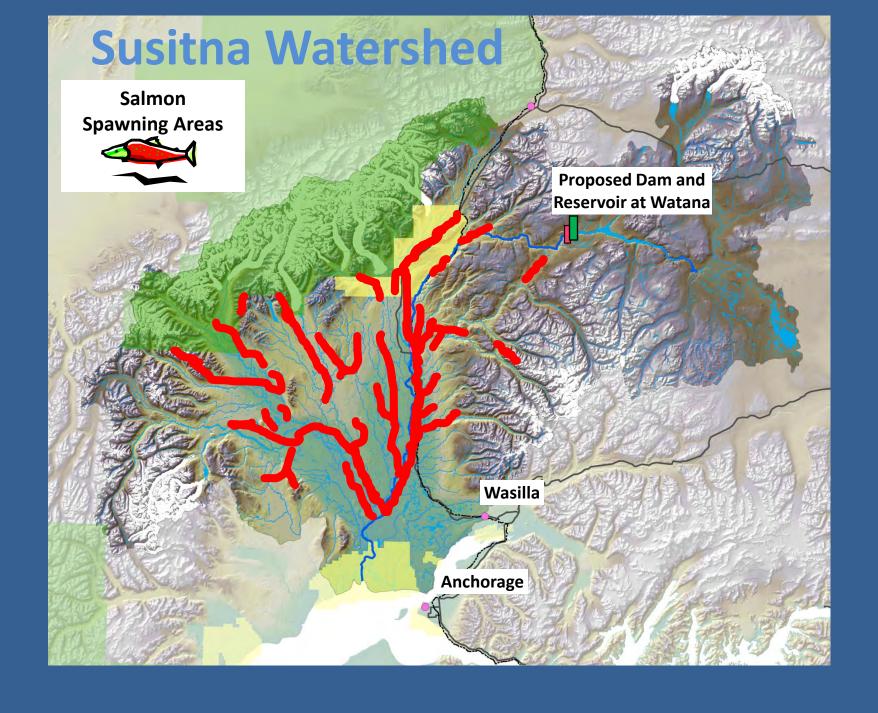


#### Instream Flow

 The 1980s APA Project instream flow study efforts focused on establishing the relationships between physical variables, fluvial processes and fish resources in the Middle River.








#### **Instream Flow**

|      | Potential Data Gap Topics   |
|------|-----------------------------|
| IF-1 | Updated Instream flow study |
|      |                             |
|      |                             |
|      |                             |









## Adult Salmon

- migration and spawn timing has been documented
- slough escapements above RM 98.6 was estimated in 1980s
- relative abundance in tributaries above RM 98.6 was estimated in 1980s
- biological characteristics (i.e., sex ratio, fecundity, age, and length) are well quantified
- population size and relative abundance in select major tributaries is currently estimated







#### **Adult Salmon**

|      | Potential Data Gap Topics                                                          |
|------|------------------------------------------------------------------------------------|
| AS-1 | Synthesis of existing information for adult salmon                                 |
| AS-2 | Habitat change analysis                                                            |
| AS-3 | Sockeye spawning distribution and habitat utilization                              |
| AS-4 | Chinook abundance and distribution in the upper Susitna                            |
| AS-5 | Chinook salmon spawning distribution and habitat utilization in the middle Susitna |
| AS-6 | Coho salmon spawning distribution and habitat                                      |
| AS-7 | Chum salmon spawning distribution and habitat                                      |
| AS-8 | Pink salmon spawning distribution and habitat                                      |
| AS-9 | Genetic baselines for middle Susitna Chinook                                       |







# Resident and Rearing Anadromous Fish

- Relative abundance and distribution of 19 species was estimated
- Age class and sex ratio estimated for key species
- Arctic grayling population estimate was completed in Upper River tributaries
- Outmigration timing for most species of juvenile salmon was documented
- Movements of selected species of resident adult fish in the Susitna River
- Critical habitats (spawning and overwinter) were Identified for some species







#### **Resident & Rearing Anadromous Fish**

|       | Potential Data Gap Topics                                                    |
|-------|------------------------------------------------------------------------------|
| RR-1  | Resident and rearing fish within the proposed impoundment zone               |
| RR-2  | Resident and rearing fish along the access and transmission corridor         |
| RR-3  | Resident fish movement within the middle Susitna River                       |
| RR-4  | Eulachon synthesis document                                                  |
| RR-5  | Northern pike                                                                |
| RR-6  | Middle river YOY sockeye from outmigration and rearing                       |
| RR-7  | Juvenile salmon density in mainstem and tributaries of Susitna River         |
| RR-8  | Peak outmigration timing for salmon                                          |
| RR-9  | Water quality parameters, substrate size, and water velocity of active redds |
| RR-10 | Requirements of rearing juvenile coho salmon in the Susitna River            |
| RR-11 | Resident and rearing fish habitat requirements in middle Susitna             |







# Macroinvertebrates and Periphyton

- Previous studies limited in geographic extent
- Temporal extent and methods (drift and benthic) were robust





#### **Macroinvertebrates and Periphyton**

|      | Potential Data Gap Topics                                                                     |
|------|-----------------------------------------------------------------------------------------------|
| MP-1 | Update baseline macroinvertebrate datasets                                                    |
| MP-2 | Updated baseline information on primary productivity, transported, and benthic organic matter |
|      |                                                                                               |
|      |                                                                                               |







# Water Quality

- Water quality conditions influenced by high velocity, cool temperatures, and high turbidity resulting from upstream glacial meltwater
- Water quality and hydrologic conditions are naturally different upstream of Tri Rivers
- Sediment loads from the Chulitna River upto 15 times greater than Susitna River although both contribute similar amounts of flow below the confluence.





#### **Water Quality**

|      | Potential Data Gap Topics                                                                                                              |
|------|----------------------------------------------------------------------------------------------------------------------------------------|
| WQ-1 | Update baseline for turbidity, TSS, TDS, pH dissolved oxygen, temperature, metals, nutrients, organics, bacteria, and other parameters |
| WQ-2 | Temperature, TSS, and dissolved gas model for middle and lower Susitna River                                                           |
|      |                                                                                                                                        |
|      |                                                                                                                                        |







# Hydrology, Ice, Sediment, Geomorphology, and Climate

- 14 gages operated at different times, especially during 1980s
- Ice observations on Lower and Middle River during 1980s
- Slough hydrology studies to determine the sources of slough inflow at different river discharges during 1980s
- River morphology analysis from Devil Canyon to Cook Inlet in 1982
- USGS sediment transport studies along the Susitna River, Chulitna River, Talkeetna River, and Yentna River between 1980 and 1985
- Climate trend data is available although no studies have specifically been completed for the Susitna River
- UAF glacial studies for the 1980s APA Project
- Aerial imagery available for since 1982 will be useful in characterizing channel morphology changes







#### Hydrology, Ice, Sediment, Geomorphology, and Climate

|      | Potential Data Gap Topics                                                    |
|------|------------------------------------------------------------------------------|
| HG-1 | Streamflow synthesis (USGS)                                                  |
| HG-2 | Middle and lower river ice studies                                           |
| HG-3 | Slough groundwater/ surface water studies                                    |
| HG-4 | Middle and lower river change analysis                                       |
| HG-5 | Chulitna confluence and lower river sediment transport and aggradation study |
| HG-6 | Large woody debris recruitment and transport                                 |
| HG-7 | Climate change and variability                                               |
| HG-8 | Glacial contribution to streamflow in the Susitna Basin                      |
| HG-9 | Hydrology and geomorphology data rescue                                      |







### Marine Mammals

 Aerial surveys of CIBWs in 1982 and 1983 confirming the summer aggregation of belugas at the Susitna Delta

No studies were conducted on other marine mammals

